K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1 2020

Lời giải:

\(\frac{5xy-4y}{2x^2y^3}+\frac{3xy-4y}{2x^2y^3}=\frac{8xy-8y}{2x^2y^3}=\frac{8y(x-1)}{2x^2y^3}=\frac{4(x-1)}{x^2y^2}\)

\(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}=\frac{-3x}{3x^2y}=\frac{-1}{xy}\)

3 tháng 7 2016

Tổng hợp hệ pt

19 tháng 6 2016

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

Xét PT(1)

\(2x^2+y^2-3xy+3x-2y+1=0\)

\(\Leftrightarrow 2x^2-3x(y-1)+(y-1)^2=0\)

Đặt \(y-1=t\Rightarrow 2x^2-3xt+t^2=0\)

\(\Leftrightarrow (x-t)(2x-t)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-t=0\\2x-t=0\end{matrix}\right.\)

TH1: \(x-t=0\Leftrightarrow x=t=y-1\)

Thay vào PT(2)

\(\Rightarrow 4(y-1)^2-y^2+(y-1)+4=\sqrt{3y-2}+\sqrt{5y-1}\)

\(3y^2-7y+7=\sqrt{3y-2}+\sqrt{5y-1}\)

\(\Leftrightarrow 3(y^2-3y+2)=\sqrt{3y-2}-y+\sqrt{5y-1}-(y+1)\)

\(\Leftrightarrow 3(y^2-3y+2)=\frac{3y-2-y^2}{\sqrt{3y-2}+y}+\frac{3y-2-y^2}{\sqrt{5y-1}+y+1}\)

\(\Leftrightarrow (y^2-3y+2)\left[3+\frac{1}{\sqrt{3y-2}+y}+\frac{1}{\sqrt{5y-1}+y+1}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông luôn lớn hơn 0. Do đó \(y^2-3y+2=0\Leftrightarrow y=1\) hoặc \(y=2\)

Kéo theo \(x=0\) hoặc x=1

TH2: \(2x=t=y-1\)

\(\Leftrightarrow y=2x+1\). Thay vào PT(2)

\(4x^2-(2x+1)^2+x+4=\sqrt{4x+1}+\sqrt{9x+4}\)

\(3-3x=\sqrt{4x+1}+\sqrt{9x+4}\)

\(\Leftrightarrow \sqrt{4x+1}-1+\sqrt{9x+4}-2+3x=0\)

\(\Leftrightarrow \frac{4x}{\sqrt{4x+1}+1}+\frac{9x}{\sqrt{9x+4}+2}+3x=0\)

\(\Leftrightarrow x\left(\frac{4}{\sqrt{4x+1}+1}+\frac{9}{\sqrt{9x+4}+2}+3\right)=0\)

Dễ thấy biểu thức trong ngoặc lớn luôn lớn hơn 0. Do đó x=0 kéo theo \(y=1\)

Vậy \((x,y)\in\left\{(0;1);(1;2)\right\}\)

23 tháng 8 2016

ĐKXĐ: \(x>-1;y\ge\frac{2}{9}\)

(2) \(\Leftrightarrow\left(x+1\right)-3\sqrt{x+1}-\frac{1}{\sqrt{x+1}}=y^2-3y-\frac{1}{y}\)

Xét \(f\left(t\right)=t^2-3t-\frac{1}{t};t>0\)

\(f'\left(t\right)=2t-3+\frac{1}{t^2}=\frac{2t^3-3t^2+1}{t^2}=\frac{\left(t-1\right)^2\left(2t+1\right)}{t^2}>0;\forall t>0\)

→ f(t) đồng biến trên (0;+∞)

Mà \(f\left(\sqrt{x+1}\right)=f\left(y\right)\Leftrightarrow\sqrt{x+1}=y\Leftrightarrow x=y^2-1\)

thế vào (1) ta được

\(\sqrt{9y-2}+\sqrt[3]{7y^2+2y-5}=2y+3\)

\(\Leftrightarrow\sqrt{9y-2}-\left(y+2\right)+\sqrt[3]{7y^2+2y-5}-\left(y+1\right)=0\)

\(\Leftrightarrow\frac{y^2-5y+6}{\sqrt{9y-2}+y+2}+\frac{y^3-4y^2+y+6}{\sqrt[3]{\left(7y^2+2y-5\right)^2}+\left(y+1\right)\sqrt[3]{7y^2+2y-5}+\left(y+1\right)^2}=0\)

\(\Leftrightarrow\left(y^2-5y+6\right)\left(\frac{1}{\sqrt{9y-2}+y+2}+\frac{y+1}{\sqrt[3]{\left(7y^2+2y-5\right)^2}+\left(y+1\right)\sqrt[3]{7y^2+2y-5}+\left(y+1\right)^2}\right)=0\)

\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left[\begin{array}{nghiempt}y=2\Rightarrow x=3\\y=3\Rightarrow x=8\end{array}\right.\)

Vậy hệ đã cho có hai nghiệm (8;3) và (3;2)

21 tháng 6 2021

Má mày giúp tao bài tao gửi đii:(

DD
21 tháng 6 2021

Ta có bất đẳng thức: với \(x,y>0\)

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Dấu \(=\)khi \(x=y\).

Áp dụng bất đẳng thức trên ta được: 

\(\frac{1}{2x+3y+3z}\le\frac{1}{4}\left(\frac{1}{2x+y+z}+\frac{1}{2y+2z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{2}\left(\frac{1}{y+z}\right)\right]\)

\(=\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{8}\left(\frac{1}{y+z}\right)\)

Tương tự với \(\frac{1}{3x+2y+3z},\frac{1}{3x+3y+2z}\)sau đó cộng lại vế với vế ta được: 

\(P\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=3\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{1}{8}\)