K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Bài 1:

\(a,\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(x^2-xy+1\right)=\left(x^3y^2+\dfrac{1}{2}x^2y^3\right)\left(x^2-xy+1\right)=x^5y^2-x^4y^3+x^3y^2+\dfrac{1}{2}x^3y^3-\dfrac{1}{2}x^3y^4+\dfrac{1}{2}x^2y^3\)

\(b,\left(\dfrac{1}{2}x-1\right)\left(2x-3\right)=x^2-\dfrac{3}{2}x-2x+3=x^2-\dfrac{7}{2}x+3\)\(c,\left(x-7\right)\left(x-5\right)=x^2-5x-7x+35=x^2-12x+35\)\(f,\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x-1\right)=\left(x^2-\dfrac{1}{4}\right)\left(4x-1\right)=4x^3-x^2-x+\dfrac{1}{4}\)Bài 2 ,

\(\left(x-1\right)\left(x^2+x+1\right)=x^3+x^2+x-x^2-x-1=x^3-1\Rightarrowđpcm\)\(b,\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4+x^3y+x^2y^2+y^3x+x^3y-x^2y^2-xy^3-y^4=x^4-y^4\)

20 tháng 10 2022

2: \(=a^2\left(a+3\right)+4\left(a+3\right)=\left(a+3\right)\left(a^2+4\right)\)

3: \(=\left(2a-1\right)^2-4b^2\)

\(=\left(2a-1-2b\right)\left(2a-1+2b\right)\)

4: \(=-\left(x^2+x-2\right)=-\left(x+2\right)\left(x-1\right)\)

5: \(=7\left(x^2-2xy^2+y^4\right)=7\left(x-y^2\right)^2\)

6: \(=\left(x+2\right)^2-y^2=\left(x+2+y\right)\left(x+2-y\right)\)

22 tháng 10 2018

\(2x^3-x^2+5x+3\)

\(=2x^3+x^2-2x^2-x+6x^2+3\)

\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)

\(=\left(2x+1\right)\left(x^2-x+3\right)\)

9 tháng 9 2017

Bài 1:

\(\left(2x+3\right)^2+\left(2x-3\right)^2+2\left(2x+3\right)\left(2x-3\right)\)

\(=\left(2x+3+2x-3\right)^2=\left(4x\right)^2=16x^2\)

Bài 2:

a, \(\left(x^2+xy+y^2\right)\left(x-y\right)+\left(x^2-xy+y^2\right)\left(x+y\right)\)

\(=x^3-y^3+x^3+y^3=2x^3\)

b, \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)

\(=\left(2a\right)^3-b^3=8a^3-b^3\)

c, \(13x\left(3-x\right)-12\left(x+1\right)\)

\(=39x-13x^2-12x-12=-13x^2-27x-12\)

d, \(\left(2x-1\right)\left(x+12\right)\left(x^2+14\right)\)

\(=\left(2x^2+24x-x-12\right)\left(x^2+14\right)\)

\(=2x^4+23x^3-12x^2+28x^2+322x-168\)

\(=2x^4+23x^3+16x^2+322x-168\)

e, Giống câu b

Chúc bạn học tốt!!!

6 tháng 5 2018

\(A=a^4+a^3+a^3b+a^2b\)

\(A=a\left(a^3+a^2\right)+b\left(a^3+a^2\right)\)

\(A=\left(a+b\right)\left(a^3+a^2\right)\)

\(A=a^2\left(a+1\right)\left(a+b\right)\)

6 tháng 5 2018

Bài 1:

\(A=x^2+6x+5=x^2+5x+x+5=x\left(x+5\right)+\left(x+5\right)=\left(x+1\right)\left(x+5\right)\)

Đặt \(a=x^2-x+2\) ta có:

\(B=\left(a-1\right).a-12=a^2-a-12=a^2+3a-4a-12=a\left(a+3\right)-4\left(a+3\right)=\left(a+3\right)\left(a-4\right)\)

Thay a = x2 - x + 2 vào ta được:

\(\left(x^2-x+2-4\right)\left(x^2-x+2+3\right)=\left(x^2-x-2\right)\left(x^2-x+5\right)=\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)\)

a: \(=\left(x^2-4\right)\left(x^2+4\right)-x^2+3\)

\(=x^4-16-x^2+3\)

\(=x^4-x^2-13\)

b: \(=x^3-6x^2+12x-8-x^3-1+6x^2-12x+6\)

\(=-3\)

c: \(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2-b^3-6a^2b\)

\(=2b^2\)