Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+......+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
Vậy..
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n+2-2}{4\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)
b.
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{\left(n-1\right)n\left(n+1\right)}\\ =\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+....+\dfrac{2}{\left(n-1\right).n.\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}-\dfrac{1}{n\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{1}{4}-\dfrac{1}{2n\left(n+1\right)}\)
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
\(\left(1-\frac{1}{x+1}\right)\left(1-\frac{1}{x+2}\right)\left(1-\frac{1}{x+3}\right)...\left(1-\frac{1}{x+2018}\right)\)
\(=\frac{x}{x+1}.\frac{x+1}{x+2}.\frac{x+2}{x+3}....\frac{x+2017}{x+2018}\)
\(=\frac{x}{x+2018}\)
a) (2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x(2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x
=4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x
=8x.5(2x+1)(2x−1)(2
b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)=\left(\dfrac{1}{x\left(x+1\right)}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)=\left(\dfrac{1-2x+x^2}{x\left(x+1\right)}\right):\left(\dfrac{1+x^2-2x}{x}\right)=\left(\dfrac{\left(x-1\right)^2}{x\left(x+1\right)}\right)\cdot\left(\dfrac{x}{\left(x-1\right)^2}\right)=\dfrac{\left(x-1\right)^2\cdot x}{\left(x-1\right)^2\cdot x\cdot\left(x+1\right)}=\dfrac{1}{x+1}\)
Ta có: \(\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}=\dfrac{1}{2}.\left(\dfrac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\right)=\dfrac{1}{2}\left(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)