K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{-3}{4\sqrt{3}-7}-\frac{3}{4\sqrt{3}+7}+\sqrt{4-2\sqrt{3}}\)

\(=\frac{-3\left(4\sqrt{3}+7\right)-3\left(4\sqrt{3}-7\right)}{\left(4\sqrt{3}\right)^2-7^2}+\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\frac{-12\sqrt{3}-21-12\sqrt{3}+21}{48-49}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\frac{-24\sqrt{3}}{-1}+\left|\sqrt{3}-1\right|\)

\(=24\sqrt{3}+\sqrt{3}-1\)(vì \(\sqrt{3}>1\))

\(=25\sqrt{3}-1\)

11 tháng 8 2020

\(=\frac{-3\left(4\sqrt{3}+7\right)-3\left(4\sqrt{3}-7\right)}{\left(4\sqrt{3}\right)^2-49}+\sqrt{4-2\sqrt{3}}\)

Tiếp tục nhé

19 tháng 7 2016

a) Trục căn thức ở mỗi số hạng của biểu thức A,ta có:

 \(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)=\(\frac{\sqrt{2}+\sqrt{1}}{1-2}-\frac{\sqrt{3}+\sqrt{2}}{2-3}+\frac{\sqrt{3}+\sqrt{4}}{3-4}-...+\frac{\sqrt{2007}+\sqrt{2008}}{2007-2008}\)

\(-\left(\sqrt{1}+\sqrt{2}\right)+\left(\sqrt{2}+\sqrt{3}\right)-\left(\sqrt{3}+\sqrt{4}\right)+...-\left(\sqrt{2007}+\sqrt{2008}\right)\)

=\(-1-\sqrt{2008}\)

b)Ta xét số hạng tổng quát: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)=\(\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng vào biểu thức B ta được: 

B= \(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-...+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}=1-\frac{1}{11}\)\(\frac{10}{11}\)

19 tháng 7 2016

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{2007}-\sqrt{2008}}\)

\(=\frac{-1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-\frac{1}{\sqrt{4}-\sqrt{3}}+\frac{1}{\sqrt{5}-\sqrt{4}}-....+\frac{1}{\sqrt{2007}-\sqrt{2006}}-\frac{1}{\sqrt{2008}-\sqrt{2007}}\)

\(=\frac{-1\cdot\left(\sqrt{2}+\sqrt{1}\right)}{2-1}+\frac{1\cdot\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{1\cdot\left(\sqrt{4}+\sqrt{3}\right)}{4-3}+\frac{1\cdot\left(\sqrt{5}+\sqrt{4}\right)}{5-4}-...+\frac{1\cdot\left(\sqrt{2007}+\sqrt{2006}\right)}{2007-2006}-\frac{1 \left(\sqrt{2008}+\sqrt{2007}\right)}{2008-2007}\)

\(=-1-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+\sqrt{4}+\sqrt{5}-...+\sqrt{2006}+\sqrt{2007}-\sqrt{2007}-\sqrt{2008}\) 

\(=-1-\sqrt{2008}\)

 

22 tháng 10 2018

a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)

\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)

\(\Rightarrow\) \(2S=\frac{2016}{2017}\)

\(\Rightarrow\) \(S=\frac{1008}{2017}\)

10 tháng 8 2020

a) \(\sqrt{3+2\sqrt{2}}-\sqrt{17-12\sqrt{2}}\)

= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(3-2\sqrt{2}\right)^2}\)

= \(\left|\sqrt{2}+1\right|-\left|3-2\sqrt{2}\right|\)

= \(\sqrt{2}+1-3+2\sqrt{2}\)

= \(3\sqrt{2}-2\)

b) \(\sqrt{5-2\sqrt{6}}-\sqrt{14-4\sqrt{6}}-\sqrt{48}\)

= \(\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{\left(2\sqrt{3}-\sqrt{2}\right)^2}-4\sqrt{3}\)

= \(\left|\sqrt{3}-\sqrt{2}\right|-\left|2\sqrt{3}-\sqrt{2}\right|-4\sqrt{3}\)

= \(\sqrt{3}-\sqrt{2}-2\sqrt{3}+\sqrt{2}-4\sqrt{3}\)

= \(-5\sqrt{3}\)

c) \(\sqrt{11+3\sqrt{8}}-\sqrt{17-12\sqrt{2}}-4\sqrt{8}\)

= \(\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-2\sqrt{2}\right)^2}-8\sqrt{2}\)

= \(\left|3+\sqrt{2}\right|-\left|3-2\sqrt{2}\right|-8\sqrt{2}\)

= \(3+\sqrt{2}-3+2\sqrt{2}-8\sqrt{2}\)

= \(-5\sqrt{2}\)

11 tháng 8 2020

cảm ơn bạn nhiều nha!!!!

17 tháng 9 2018

Đặt \(\hept{\begin{cases}\sqrt{1+\frac{\sqrt{3}}{2}}=a\\\sqrt{1-\frac{\sqrt{3}}{2}}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=2;ab=\frac{1}{2};a-b=1\)

\(\Rightarrow\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{a^2}{1+a}+\frac{b^2}{1-b}\)

\(=\frac{a^2+b^2-ab\left(a-b\right)}{1-ab+\left(a-b\right)}=\frac{2-\frac{1}{2}.1}{1-\frac{1}{2}+1}=1\)