Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x^4 + x^3 - x^2 - 4x - 2 2x^2 - x - 2 x^2 + x + 1 2x^4 - x^3 - 2x^2 2x^3 + x^2 - 4x 2x^3 - x^2 - 2x 2x^2 - 2x - 2 2x^2 - x - 2 -x
\(\left(2x^4+x^3-x^2-4x-2\right):\left(2x^2-x-2\right)=x^2+x+1-\frac{x}{2x^2-x-2}\)
a: \(=\dfrac{4x-8+2x+4-8}{\left(x-2\right)\left(x+2\right)}=\dfrac{6x-12}{\left(x-2\right)\left(x+2\right)}=\dfrac{6}{x+2}\)
b: \(=\dfrac{-x+7x-4}{3x-2}=\dfrac{6x-4}{3x-2}=2\)
c: \(=\dfrac{x}{2x+1}-\dfrac{1}{\left(2x+1\right)\left(2x-1\right)}-\dfrac{\left(x-2\right)}{2x-1}\)
\(=\dfrac{2x^2-x-1-\left(x-2\right)\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x^2-x-1-2x^2-x+4x+2}{\left(2x+1\right)\left(2x-1\right)}\)
\(=\dfrac{2x+1}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{1}{2x-1}\)
d: \(=\dfrac{5}{2x-3}+\dfrac{2}{2x+3}+\dfrac{2x-33}{4x^2-99}\)
\(=\dfrac{10x+15+4x-6+2x-33}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{16x-24}{\left(2x-3\right)\left(2x+3\right)}=\dfrac{8}{2x+3}\)
Mấy bài dài dài kia tí mình làm cho :)
( x - 1 )3 - x( x - 2 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 4x + 4 ) + 1
= x3 - 3x2 + 3x - x3 + 4x2 - 4x
= x2 - x = x( x - 1 )
2x( 3x + 2 ) - 3x( 2x + 3 )
= 6x2 + 4x - 6x2 - 9x
= -5x
( x + 2 )3 + ( x - 3 )2 - x2( x + 5 )
= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2
= 2x2 + 6x + 17
( 2x + 3 )( x - 5 ) + 2x( 3 - x ) + x - 10
= 2x2 - 7x - 15 + 6x - 2x2 + x - 10
= -25
( x + 5 )( x2 - 5x + 25 ) - x( x - 4 )2 + 16x
= x3 + 53 - x( x2 - 8x + 16 ) + 16x
= x3 + 125 - x3 + 8x2 - 16x + 16
= 8x2 + 125
( -x - 2 )3 + ( 2x - 4 )( x2 + 2x + 4 ) - x2( x - 6 )
= -x3 - 6x2 - 12x - 8 + 2x3 - 16 - x3 + 6x2
= -12x - 24 = -12( x + 2 )
Tương tự ...
a, \(\left(x-1\right)^3-x\left(x-2\right)^2+1=x^3-3x^2+3x-1-x^3+4x^2-4x+1=x^2-x\)
b, \(2x\left(3x+2\right)-3x\left(2x+3\right)=6x^2+4x-6x^2-9x=-5x\)
c, \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)=x^3+6x^2+12x+8+x^2+6x+9-x^3-5x^2=2x^2+18x+17\)
\(2x^2\left(3x-5x^3\right)+10x^5-5x^3\)
\(=\left(6x^3-10x^5\right)+10x^5-5x^3\)
\(=6x^3-10x^5+10x^5-5x^3\)
\(=\left(6x^3-5x^3\right)-\left(10^5-10^5\right)\)
\(=x^3\)
\(\left(x+2\right)\left(x^2-2x+4\right)+\left(x-4\right)\left(x+2\right)\)
\(=\left(x+2\right)\left[\left(x^2-2x+4\right)\right]+\left(x-4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4+x-4\right)\)
\(=\left(x+2\right)\left[\left(x-2x\right)+\left(4-4\right)+x^2\right]\)
\(=\left(x+2\right)\left(-1+x\right)\)
\(=-x+x^2+\left(-2\right)+2x\)
\(=x+x^2+\left(-2\right)\)
\(\left(x-2\right)\left(x^2-2x+1\right)\left(x+2\right)\left(x^2+2x+4\right)\)
\(=\left[\left(x-2\right)\left(x^2+2x+4\right)\right]\left[\left(x+2\right)\left(x^2-2x+4\right)\right]\)
\(=\left(x^3-8\right)\left(x^3+8\right)\)
\(=x^6-64\)
\(\left(x-2\right)\left(x^2-2x+4\right)\left(x+2\right)\left(x^2+2x+4\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right)\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x^3-8\right)\left(x^3+8\right)\)
\(=x^6+64\)