Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+2+2}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\sqrt{2}+1\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
1. \(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
1/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\left(1+\sqrt{12}\right)^2}+\sqrt{3+\left(1+\sqrt{12}\right)^2}\)
\(=\sqrt{5-\left|1+\sqrt{12}\right|}+\sqrt{3+\left|1+\sqrt{12}\right|}\)
\(=\sqrt{5-1-\sqrt{12}}+\sqrt{3+1+\sqrt{12}}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
\(=\frac{\sqrt{8}-\sqrt{7}}{\left(\sqrt{8}-\sqrt{7}\right)\left(\sqrt{8}+\sqrt{7}\right)}+5\sqrt{7}-2\sqrt{2}\)
\(=\frac{2\sqrt{2}-\sqrt{7}}{8-7}+5\sqrt{7}-2\sqrt{2}\)
\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-2\sqrt{2}=4\sqrt{7}\)
\(\frac{2\sqrt{12}-\sqrt{6}}{2\sqrt{6}-\sqrt{3}}+\frac{10+\sqrt{5}}{2\sqrt{15}+\sqrt{3}}\)
\(=\frac{\sqrt{2}\left(2\sqrt{6}-\sqrt{3}\right)}{2\sqrt{6}-\sqrt{3}}+\frac{\sqrt{5}\left(2\sqrt{5}+1\right)}{\sqrt{3}\left(2\sqrt{5}+1\right)}\)
\(=\sqrt{2}+\frac{\sqrt{5}}{\sqrt{3}}\)
\(=\frac{\sqrt{6}+\sqrt{5}}{\sqrt{3}}\)
p/s: chúc bạn học tốt
\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{2}.\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
đề đâu
https://www.youtube.com/channel/UChl7sWYr-g8VLbItDuaWPnw
Đề đây
Sub hộ mik