Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk thấy phần a dễ lên bạn tự làm nha
B=(37373737.43-43434343.37):(12+22+32+............+1002)
B=(37.1010101.43-43.101010101.37):(12+22+32+............+1002)
B=0:(12+22+32+............+1002)
B=0
Vậy B=0
Chúc bn học tốt
A= 2100-(1+2+...+299)
Đặt B=1+2+...+299
2B= 2+22+...+2100
=> 2B-B= (2+...+299+2100) - ( 1+2+...+299)
=> B= 2100-1
=> A= 2100-(2100-1)= 2100 - 2100 +1= 1
b ) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100
= 1 - 1/100
= 99/100
c ) Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
=> A < 1 - 1/2 + 1/2 - 1/3 + ... + 1/99 - 1/100= 1 - 1/100 = 99/100 < 1
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)< 1
b, \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\)\(\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
c,Ta thấy
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(.....\)
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\left(đpcm\right)\)
Đặt \(A=2^0+2^1+..+2^{100}\)
\(\Rightarrow2A=2^1+2^2+..+2^{101}\)
lấy hiệu hai phương trình ta có
\(A=2^{101}-2^0=2^{101}-1\)
.\(B=5^1+5^2+..+5^{200}\)
\(\Rightarrow5B=5^2+5^3+..+5^{201}\)
Lấy hiệu hai phương trình ta có :
\(4B=5^{201}-5\Rightarrow B=\frac{5^{201}-5}{4}\)
1.(5.3^11+4.3^12):(3^9.5^2-3^9.2^3)
=(5.3^11+4.3^12):(3^9.5^2-3^9.2^3)
=(5.3^11+4.3^11.3):[3^9.(5^2-2^3)]
=(5.3^11+12.3^11):[3^9.17]
=3^11.(5+12):(3^9.17)
=(3^11.17):(3^9.17)
=17.(3^11:3^9)
=17.3^2
=17.9
=153
2.(12+22+32+...+992+1002).(36.333-108.111)
=2.(12+22+32+...+992+1002).(36.333-36.3.111)
=2.(12+22+32+...+992+1002).(36.333-36.333)
=2.(12+22+32+...+992+1002).0
=0
A = 2100 - 299 - 298 - ...... - 22 - 2 - 1
A = 2100 - ( 299 + 298 + ...... + 22 + 2 + 1 )
Đặt B là 1 + 2 + 22 + ... + 298 + 299
2B = 2 + 22 + 23 + ... + 299 + 2100
B = 2B - B = 2100 - 1
A = 2100 - B = 2100 - ( 2100 - 1 ) = 2100 - 2100 + 1 = 1
2A = 2101 - 2100 - 299 - ..............- 23 - 22 - 2
Lấy 2A - A ta có:
2A - A = 2101 - 2.2100 +1
A = 2101 - 2101 + 1
= 1
\(\left(1.2.3.........100\right)\left(1^2+2^2+.....+100^2\right).\left(2^4-4^2\right)\)
\(=\left(1.2.3.4......100\right)\left(1^2+2^2+3^2+....+100^2\right)\left(16-16\right)\)
\(=\left(1.2.3.4......100\right)\left(1^2+2^2+3^2+...+100^2\right).0\)
\(=0\)
a)\(12:\left\{400:\left[500-\left(125+25×7\right)\right]\right\}\)
\(12:\left\{400:\left[500-300\right]\right\}\)
\(12:2\)
\(6\)
b)\(\left[\left(7-3^3:3^2\right):2^2+99\right]-100\)
\(=\left[4:4+99\right]-100\)
\(=100-100\)
\(=0\)
\(c,3^2×\left[\left(5^2-3\right):11\right]-2^4+2×10^3\)
\(=9×2-16+2×10000\)
\(=18-16+20000\)
\(=20002\)