Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\)
=> \(A^2=\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
=> \(A^2=2\sqrt{5}+2\sqrt{5-4}\)
=> \(A^2=2\sqrt{5}+2\)
=> \(A^2=2\left(\sqrt{5}+1\right)\)
=> \(A=\sqrt{2\left(\sqrt{5}+1\right)}\)
=> \(\frac{A}{\sqrt{\sqrt{5}+1}}=\frac{\sqrt{2\left(\sqrt{5}+1\right)}}{\sqrt{\sqrt{5}+1}}=\sqrt{2}\)
Đặt: \(B=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> \(VT=\frac{A}{\sqrt{\sqrt{5}+1}}-B=\sqrt{2}-\left(\sqrt{2}-1\right)=\sqrt{2}-\sqrt{2}+1=1\)
VẬY KẾT QUẢ CỦA PHÉP TÍNH = 1.
\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2+\sqrt{2+\sqrt{3}}}\cdot\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2^2-\left(\sqrt{2+\sqrt{3}}\right)^2}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{4-2-\sqrt{3}}\)
\(=\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
\(=\sqrt{2^2-\sqrt{3}^2}=\sqrt{4-3}=1\)
a, \(\frac{\sqrt{3-\sqrt{5}}\times''3+\sqrt{5}''}{\sqrt{10}+\sqrt{2}}\)
\(=\frac{-9.976153125}{4.576491223}\)
b,\(\frac{''\sqrt{5}+2''^2-8\sqrt{5}}{2\sqrt{5}-4}\)
\(=\frac{0.05572809}{0.472135955}\)
P/s; Em không chắc đâu ạ. Mới lớp 5 lên 6 thôi
a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)
= \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)
= \(\frac{-2\sqrt{6}}{2}\)
= \(-\sqrt{6}\)
Thực hiện phép tính
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\)+\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\) + \(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
<=> \(\frac{\left(\sqrt{2-\sqrt{3}}\right)^2+\left(\sqrt{2+\sqrt{3}}\right)^2}{\left(\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2-\sqrt{3}}\right)}\)
<=>\(\frac{2-\sqrt{3}+2-\sqrt{3}}{\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
<=>\(\frac{4}{\sqrt{4-3}}\)
<=> 4
mình năm nay lên lớp 9 nên có chỗ nào sai xót thì bạn sửa lại nha k mình nhé ^^
\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\)
\(=\sqrt{\frac{6+2\sqrt{5}}{2}}-\sqrt{\frac{6-2\sqrt{5}}{2}}-\sqrt{2}\)
\(=\frac{\sqrt{5}+1}{\sqrt{2}}-\frac{\sqrt{5}-1}{\sqrt{2}}-\sqrt{2}\)
\(=\frac{2}{\sqrt{2}}-\sqrt{2}=0\)
bn chép lại đề nha
\(=\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}+2\)
\(=\left|\sqrt{5}+1\right|+\left|\sqrt{5}-1\right|+2\)
\(=2\sqrt{5}+2\)
Dat A=\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
=> A2=\(2+\sqrt{3}+2-\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=4-2\sqrt{4-3}=2\)
Suy ra A=\(\sqrt{2}\)
Study well