Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3}+9}=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}=\)
\(\sqrt{5}-\sqrt{6-2\sqrt{5}}=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1=1.\)
\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{1}=1\)
b,c
\(\sqrt{13+4\sqrt{3}}=\sqrt{13+2\sqrt{12}}=\sqrt{12}+1=2\sqrt{3}+1\)
=>BT=\(\sqrt{5-\left(2\sqrt{3}+1\right)}+\sqrt{3+\left(2\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
c,\(=\sqrt{1+\sqrt{3+2\sqrt{3}+1}}+\sqrt{1-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)
\(=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)
\(=\frac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
\(\sqrt{24+8\sqrt{5}}+\) \(\sqrt{9-4\sqrt{5}}=\) \(\sqrt{\left(2\sqrt{5}\right)^2+2.2\sqrt{5}.2+4}\) + \(\sqrt{5-2\sqrt{5}.2+4}\)
= \(\sqrt{\left(2\sqrt{5}+2\right)^2}+\) \(\sqrt{\left(\sqrt{5}-2\right)^2}\) = \(2\sqrt{5}+2+\sqrt{5}-2=3\sqrt{5}\)
==================================================
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) = \(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)= \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
===========================================================
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+30\sqrt{3+2\sqrt{2}}}=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{43+30\sqrt{2}}\) \(=\sqrt{\left(3\sqrt{2}+5\right)^2}=3\sqrt{2}+5\)
================================================================
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20-2\cdot3\cdot\sqrt{20}+9}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{20}+3}}\)
\(=\sqrt{5-\sqrt{6-\sqrt{20}}}\)
\(=\sqrt{5-\sqrt{5-2\sqrt{5}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}-1}\)
\(=\sqrt{4-\sqrt{5}}\)
c)\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
\(=3-2=1\)
d)\(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}+\sqrt{3+\sqrt{12+2\cdot\sqrt{12}+1}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}+\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}\)
\(=\sqrt{5-\sqrt{12}-1}+\sqrt{3+\sqrt{12}+1}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{4+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3+1}\)
\(=2\sqrt{3}\)
a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)
= \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)
= \(\frac{-2\sqrt{6}}{2}\)
= \(-\sqrt{6}\)
a.\(\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right).\left(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\right)\)
\(=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right).\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\right)\)
\(=\left(\sqrt{3}+1-\sqrt{3}+1\right)\left(\sqrt{3}-1+\sqrt{3}+1\right)\)
\(=2.2\sqrt{3}=4\sqrt{3}\)
b.\(\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=\left[\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\right]^2\)
\(=\left(\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\right)^2\)
\(=\left(\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}\right)^2=\left(\sqrt{2}\right)^2=2\)
c.\(\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}=\sqrt{5-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
Đặt: \(A=\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}\)
=> \(A^2=\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}\)
=> \(A^2=2\sqrt{5}+2\sqrt{5-4}\)
=> \(A^2=2\sqrt{5}+2\)
=> \(A^2=2\left(\sqrt{5}+1\right)\)
=> \(A=\sqrt{2\left(\sqrt{5}+1\right)}\)
=> \(\frac{A}{\sqrt{\sqrt{5}+1}}=\frac{\sqrt{2\left(\sqrt{5}+1\right)}}{\sqrt{\sqrt{5}+1}}=\sqrt{2}\)
Đặt: \(B=\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
=> \(VT=\frac{A}{\sqrt{\sqrt{5}+1}}-B=\sqrt{2}-\left(\sqrt{2}-1\right)=\sqrt{2}-\sqrt{2}+1=1\)
VẬY KẾT QUẢ CỦA PHÉP TÍNH = 1.
\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(=\sqrt{\frac{6-2\sqrt{5}}{2}}+\sqrt{\frac{6+2\sqrt{5}}{2}}\)
\(=\sqrt{\frac{5-2\sqrt{5}+1}{2}}+\sqrt{\frac{5+2\sqrt{5}+1}{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}+\frac{\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1}{\sqrt{2}}+\frac{\sqrt{5}+1}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{2}.\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\left(-3+2\sqrt{5}\right)}}=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}=\sqrt{1}=1\)