Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\sqrt{\frac{2}{9}}+\sqrt{2}+\sqrt{\frac{1}{18}}\)
\(=\frac{8\sqrt{2}}{6}+\frac{6\sqrt{2}}{6}+\frac{\sqrt{2}}{6}\)
\(=\frac{15\sqrt{2}}{6}=\frac{5\sqrt{2}}{2}\)
b) \(\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+1}{3-1}-\frac{\sqrt{3}-1}{3-1}\)
\(=\frac{\sqrt{3}+1-\sqrt{3}+1}{2}=1\)
đặt A=...
ta có
A=\(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
Ta có:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)
Lại có:
\(\frac{1}{\sqrt{x}+\sqrt{x-1}}=\frac{\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}=\sqrt{x}-\sqrt{x-1}\)
Do đó:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(\Leftrightarrow\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+....+\sqrt{99}-\sqrt{100}\)
\(\Leftrightarrow\sqrt{100}-1=10-1=9\)
\(\frac{4}{\sqrt{3}+1}-\frac{5}{\sqrt{3}-2}+\frac{6}{\sqrt{3}-3}\)
\(=\frac{4\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-\frac{5\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}+\frac{6\left(\sqrt{3}+3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}\)
\(=\frac{4\sqrt{3}-4}{2}-\frac{5\sqrt{3}+10}{-1}+\frac{6\sqrt{3}+18}{3-9}\)
\(=2\sqrt{3}-2+5\sqrt{3}+10-\sqrt{3}-3\)
\(=6\sqrt{3}+5\)
a) \(\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{4+2\sqrt{3}}}{2}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}=\frac{\sqrt{3}+1}{2}\)
b) \(\frac{\sqrt{6-2\sqrt{5}}}{1-\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{1-\sqrt{5}}=\frac{\sqrt{5}-1}{1-\sqrt{5}}=-1\)
p/s: chúc bạn học tốt
a) \(\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{4+2\sqrt{3}}}{2}=\frac{\sqrt{3+2\sqrt{3}+1}}{2}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}=\frac{\sqrt{3}+1}{2}\)
b) \(\frac{\sqrt{6-2\sqrt{5}}}{1-\sqrt{5}}=\frac{\sqrt{5-2\sqrt{5}+1}}{1-\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{1-\sqrt{5}}=\frac{\sqrt{5}-1}{1-\sqrt{5}}=-1\)
\(\frac{1}{\sqrt{2}+1}-\sqrt{2}=\frac{1-\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(=\frac{1-2-\sqrt{2}}{\sqrt{2}+1}\)
\(=\frac{-1-\sqrt{2}}{\sqrt{2}+1}=\frac{-1\left(1+\sqrt{2}\right)}{\sqrt{2}+1}=-1\)