K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

kha sdaif dòng mik xin phép trình bày bằng lời ạ :

a) tìm MTC rồi quy đồng lên làm bình thường ại , tử cộng tử mấu giữ nguyên 

b) cx vậy ạ tách mẫu tìm MTC rồi ....

~ hok tốt ~

4 tháng 12 2018

a) \(\dfrac{y}{xy-5x^2}-\dfrac{15y-25x}{y^2-25x^2}=\dfrac{y}{x\left(y-5x\right)}-\dfrac{15y-25x}{\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y\left(y+5x\right)}{x\left(y-5x\right)\left(y+5x\right)}-\dfrac{x\left(15y-25x\right)}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2-10xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y-5x}{x\left(y+5x\right)}\)

29 tháng 11 2022

b: \(=\dfrac{2}{x+2y}-\dfrac{1}{2y-x}+\dfrac{4y}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2x-4y+x+2y+4y}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{3x+2y}{\left(x-2y\right)\left(x+2y\right)}\)

28 tháng 11 2017

3) \(\dfrac{y}{xy-5y^2}-\dfrac{15y-25x}{y^2-25x^2}\) MTC: \(\left(xy-5y^2\right)\left(y^2-25x^2\right)\)

\(=\dfrac{y\left(y^2-25x^2\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}-\dfrac{\left(xy-5y^2\right)\left(15y-25x\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{y\left(y^2-25x^2\right)-\left(xy-5y^2\right)\left(15y-25x\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{\left(y^3-25x^2y\right)-\left(15xy^2-25x^2y-75y^3+125xy^2\right)}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{y^3-25x^2y-15xy^2+25x^2y+75y^3-125xy^2}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

\(=\dfrac{76y^3-140xy^2}{\left(xy-5y^2\right)\left(y^2-25x^2\right)}\)

28 tháng 11 2017

4) \(\dfrac{4-2x+x^2}{2+x}-2-x\)

\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{2+x}{1}\)

\(=\dfrac{4-2x+x^2}{2+x}-\dfrac{\left(2+x\right)\left(2+x\right)}{2+x}\)

\(=\dfrac{4-2x+x^2-\left(2+x\right)\left(2+x\right)}{2+x}\)

\(=\dfrac{4-2x+x^2-\left(2+x\right)^2}{2+x}\)

\(=\dfrac{4-2x+x^2-\left(4+4x+x^2\right)}{2+x}\)

\(=\dfrac{4-2x+x^2-4-4x-x^2}{2+x}\)

\(=\dfrac{-6x}{2+x}\)

27 tháng 11 2017

1) \(\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}-\dfrac{1}{1-x}+1\)

\(=\dfrac{x^2}{x+1}+\dfrac{2x}{x^2-1}+\dfrac{1}{x-1}+1\)

\(=\dfrac{x^2}{x+1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{1}{x-1}+1\) MTC: \(\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{x^2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2\left(x-1\right)+2x+\left(x+1\right)+\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^3-x^2+2x+x+1+x^2-1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)}\)

b) \(\dfrac{1}{x^3-x}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{x^2-1}\)

\(=\dfrac{1}{x\left(x^2-1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)x}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\) MTC: \(x\left(x-1\right)\left(x+1\right)\)

\(=\dfrac{1}{x\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{x\left(x-1\right)\left(x+1\right)}+\dfrac{2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1-\left(x+1\right)+2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1-x-1+2x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x}{x\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

1 tháng 12 2017

a) \(\dfrac{2x}{x^2+2xy}+\dfrac{y}{xy-2y^2}+\dfrac{4}{x^2-4y^2}\)

\(=\dfrac{2x}{x\left(x+2y\right)}+\dfrac{y}{y\left(x-2y\right)}+\dfrac{4}{\left(x-2y\right)\left(x+2y\right)}\) MTC: \(xy\left(x-2y\right)\left(x+2y\right)\)

\(=\dfrac{2x.y\left(x-2y\right)}{xy\left(x+2y\right)\left(x-2y\right)}+\dfrac{y.x\left(x+2y\right)}{xy\left(x-2y\right)\left(x+2y\right)}+\dfrac{4.xy}{xy\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2xy\left(x-2y\right)+xy\left(x+2y\right)+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{2x^2y-4xy^2+x^2y+2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

\(=\dfrac{3x^2y-2xy^2+4xy}{xy\left(x+2y\right)\left(x-2y\right)}\)

b) \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{x^3-y^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\) MTC: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{x^2+xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}-\dfrac{3xy}{\left(x-y\right)\left(x^2+xy+y^2\right)}+\dfrac{\left(x-y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{\left(x^2+xy+y^2\right)-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^2+xy+y^2-3xy+x^2-2xy+y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2x^2-4xy+2y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x^2-2xy+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

\(=\dfrac{y}{x\left(y-5x\right)}+\dfrac{25x-15y}{\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y\left(y+5x\right)+25xy-15y^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2+5xy+25xy-15y^2}{x\left(y-5x\right)\left(y+5x\right)}\)

\(=\dfrac{y^2+30xy-15y^2}{x\left(y-5x\right)\left(y+5x\right)}\)

14 tháng 12 2017

\(\dfrac{y^2+5xy-15xy+25x^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{\left(y-5x\right)^2}{x\left(y-5x\right)\left(y+5x\right)}=\dfrac{y-5x}{x\left(y+5x\right)}\)

a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)

b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)

 

24 tháng 6 2017

Phân thức đại số

Phân thức đại số