Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A/\(\left(2x^3+y^2-7xy\right)4xy^2.\)
\(=8x^4y^2+4xy^4-28x^2y^3\)
B/\(\left(2x^3-x-1\right)\left(5x-2\right)\)
\(=10x^4-5x^2-5x-4x^3+2x+2\)
\(=10x^4-5x^3-3x-4x^3+2\)
C/\(\left(2x^2-3\right)\left(4x^4+6x^2+9\right)\)
\(=\left(2x^2-3\right)\left(2x+3\right)^2\)
D/\(\left(3x^2-2y\right)^3-\left(2x^2-y\right)^3\)
( Bài này áp dụng hằng đẳng thức là làm được ạ )
a)\(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=2x^2\left(5x^2-2x+1\right)-3x\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
a. \(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
\(=10x^4-4x^3+2x^2-15x^3+6x^2-3x\)
\(=10x^4-19x^3+8x^2-3x\)
b. \(\left(2x^4-x^3+3x^2\right):\left(\frac{1}{3}x^2\right)\)
\(=\left(2x^4-x^3+3x^2\right).\frac{3}{x^2}\)
\(=0,6x^2-3x+0,9\)
a) \(\left(2x-3\right)\left(x^2-2x+1\right)+2\left(2-x\right)^3\)
\(=2x\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)+2\left(2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\right)\)
\(=2x^3-4x^2+2x-3x^2+6x-3+2\left(8-12x+6x^2-x^3\right)\)
\(=2x^3-4x^2+2x-3x^2+6x-3+16-24x+12x^2-2x^3\)
\(=\left(2x^3-2x^3\right)+\left(-4x^2-3x^2+12x^2\right)+\left(2x+6x-24x\right)+\left(-3+16\right)\)
\(=5x^2-16x+13\)
b)
2x^3 - 7x^2 + 2x + 3 x^2 - 4x + 3 2x^3 - 8x^2 + 6x x^2 - 4x + 3 2x + 1 - x^2 + 4x + 3 0
Vậy \(\left(2x^3-7x^2+2x+3\right):\left(x^2-4x+3\right)=2x+1\)
Câu b thêm dấu " - " ở chỗ 2x3 - 7x2 + 2x +3 và 2x3 - 8x2 + 6x nhé :)))
a: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)
\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)
\(=x^2-2x+3\)
b: \(=\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}=x^2-1\)
c: \(=\dfrac{2x^4-5x^3+2x^2+2x-1}{x^2-x-1}\)
\(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
\(a,\left(5x-2y\right)\left(x^2-xy+1\right)=5x^3-5x^2y+5x-2x^2y-2xy^2-2y=5x^3-7x^2y-2xy^2+5x-2y\)\(b\left(x-1\right)\left(x+1\right)\left(x-2\right)=\left(x^2-1\right)\left(x+2\right)=x^3+2x^2-x-2\)\(c,\dfrac{1}{2}x^2y^2\left(2x+y\right)\left(2x-y\right)=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
b) Ta có: \(\left(x^4-x^2+2x-1\right):\left(x^2+x-1\right)\)
\(=\frac{x^4-\left(x^2-2x+1\right)}{x^2+x-1}\)
\(=\frac{x^4-\left(x-1\right)^2}{x^2+x-1}\)
\(=\frac{\left(x^2-x+1\right)\left(x^2+x-1\right)}{x^2+x-1}\)
\(=x^2-x+1\)