Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này không khó. Nhưng đánh máy để giải cho bạn thì thực sự khó
Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)
\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)
Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)
\(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
b)=1/5.(1/4-1/9+1/9-1/14+1/14-1/19+...+1/44-1/49).2-1-3-5-7-...-49/89
=1/5.(1/4-1/49).2-(1+3+5+7...+49)/89
=1/5.45/196.2-625/89
=9/196.-623/89
=9/196.-7
=9/28
h cho mình nha ! Chúc bạn học tốt
\(a,\frac{27^4\cdot2^3-3^{10}\cdot4^3}{6^4\cdot9^3}=\frac{3^{12}\cdot2^3-3^{10}\cdot2^6}{2^3\cdot3^4\cdot3^6}=\frac{3^{10}\cdot2^3\cdot\left(3^2-2^3\right)}{2^3\cdot3^{10}}=3^2-2^3=1\)
\(b,\left(\frac{1}{4\cdot9}+\frac{1}{9\cdot14}+\frac{1}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-3-5-7-...-49}{89}\)
\(=\frac{1}{5}\left(\frac{5}{4\cdot9}+\frac{5}{9\cdot14}+\frac{5}{14\cdot19}+...+\frac{1}{44\cdot49}\right)\cdot\frac{1-\left(3+5+7+...+49\right)}{89}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\cdot\frac{1-\left(3+49\right)\cdot24\div2}{89}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\cdot\frac{505}{89}\)
\(=\frac{1}{5}\cdot\frac{45}{196}\cdot\frac{505}{89}\)
\(A=\frac{2^{19}.\left(2^3\right)^3+15.\left(2^2\right)^9.\left(3^2\right)^4}{2^9.3^9.2^{10}+\left(2^2.3\right)^{10}}=\frac{2^{19}.3^9+15.2^{18}.3^8}{2^{19}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^8.\left(2.3+15\right)}{2^{19}.3^9.\left(1+2.3\right)}\)
\(=\frac{2^{18}.3^8.21}{2^{19}.3^9.7}=\frac{21}{2.3.7}=\frac{1}{2}\)
Câu 1 :
\(\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^5}\)
= \(\frac{5^{32}.2^{86}.5^{43}}{\left(-2\right)^{87}.5^{15}}\)
= \(\frac{5^{72}.\left(-2\right)^{86}}{\left(-2\right)^{87}.5^{75}}\)
= \(\frac{1}{-2}\)
Câu 2 :
\(\frac{5^4.18^4}{125.9^5.16}\)
= \(\frac{5^4.2^4.3^8}{5^3.3^{10}.2^4}\)
= \(\frac{5}{3^2}\)
= \(\frac{5}{9}\)
Câu 3 :
\(\frac{9^{18}.2^{29}}{8^9.27^{12}}\)
= \(\frac{3^{36}.2^{29}}{2^{27}.3^{36}}\)
= \(2^2\)
= 4