K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

Thêm câu này hộ tớ nx nhé !
e) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right).\left(\sqrt{2}-3\sqrt{0.4}\right)\)

14 tháng 7 2019

\(a,\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{12}-\sqrt{6}}{2\left(\sqrt{2}-1\right)}-\frac{6\sqrt{6}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\left(\frac{\sqrt{6}}{2}-\frac{4\sqrt{6}}{2}\right)\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{\sqrt{6}-4\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=\frac{-3\sqrt{6}}{2}\cdot\frac{1}{\sqrt{6}}\)

\(=-\frac{3}{2}\)

 \(a,\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}=2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

\(=-13\sqrt{3}\)

\(b,2\sqrt{3}.\left(\sqrt{27}+2\sqrt{48}-\sqrt{75}\right)=2\sqrt{3}\left(3\sqrt{3}+8\sqrt{3}-5\sqrt{3}\right)\)

\(=2\sqrt{3}.6\sqrt{3}=36\)

\(c,\left(2\sqrt{2}-\sqrt{3}\right)^2=8-4\sqrt{6}+3\)

\(=11-4\sqrt{6}\)

\(d,\left(1+\sqrt{3}-\sqrt{2}\right)\left(1+\sqrt{3}+\sqrt{2}\right)=1+2\sqrt{3}+3-2\)

\(=2+2\sqrt{3}\)

28 tháng 8 2018

a) ( \(\sqrt{12}\) + \(\sqrt{3}\) ) (\(\sqrt{27}\) - \(\sqrt{3}\) )

= (\(\sqrt{3}.\sqrt{4}\) + \(\sqrt{3}\) ) ( \(\sqrt{3}.\sqrt{9}\) - \(\sqrt{3}\) )

= \(\sqrt{3}\left(\sqrt{4}+1\right)\). \(\sqrt{3}\left(\sqrt{9}-1\right)\)

= \(\sqrt{3}.3.\sqrt{3}.2\)

= 3. 6 = 18

b) \(\left(5\sqrt{3}-2\sqrt{7}\right)\)\(\left(5\sqrt{3}+2\sqrt{7}\right)\)

=\(\left(5\sqrt{3}\right)^2\) \(-\left(2\sqrt{7}\right)^2\)

= 75 - 28 = 47

28 tháng 8 2018

hay :)) ok

19 tháng 10 2021

\(a,=\sqrt{5}\left(2\sqrt{5}-3\right)+3\sqrt{5}=10-3\sqrt{5}+3\sqrt{5}=10\\ b,=5-\sqrt{3}-\left(2-\sqrt{3}\right)=3\\ c,=\dfrac{2\left(\sqrt{5}-1\right)}{4}-\dfrac{2\left(3+\sqrt{5}\right)}{4}=\dfrac{2\sqrt{5}-2-6-2\sqrt{5}}{4}=\dfrac{-8}{4}=-2\)

28 tháng 11 2016

Ta có

\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)

Thế vào ta được

\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)

\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)

3 tháng 9 2021

b, \(\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{2-\sqrt{5}}\)

\(=\dfrac{2\left(\sqrt{5}-2\right)}{5-4}-\dfrac{2\left(\sqrt{5}+2\right)}{5-4}\)

\(=2\sqrt{5}-4-2\sqrt{5}-4=-8\)

3 tháng 9 2021

a, \(\sqrt{2}\left(\sqrt{8}+\sqrt{32}-\sqrt{98}\right)\)

\(=\sqrt{2}\left(2\sqrt{2}+4\sqrt{2}-7\sqrt{2}\right)\)

\(=\sqrt{2}.\left(-\sqrt{2}\right)=-2\)