K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2018

\(A=\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{\frac{9-2.3\sqrt{3}+3}{2}}=\frac{\sqrt{2}\left(3+\sqrt{3}\right)}{\sqrt{2}}.\sqrt{\left(3-\sqrt{3}\right)^2}=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)

23 tháng 8 2018

\(\sqrt{50}-3\sqrt{98}+2\sqrt{8}+3\sqrt{32}-5\sqrt{18}\)

\(=5\sqrt{2}-21\sqrt{2}+4\sqrt{2}+12\sqrt{2}-15\sqrt{12}\)

\(=-15\sqrt{2}\)

3 tháng 7 2015

\(\sqrt{12}+2\sqrt{27}+3\sqrt{75}-9\sqrt{48}\)

=\(\sqrt{4}.\sqrt{3}+2\sqrt{9}.\sqrt{3}+3\sqrt{25}.\sqrt{3}-9\sqrt{16}.\sqrt{3}\)

=\(2\sqrt{3}+6\sqrt{3}+15\sqrt{3}-36\sqrt{3}\)

=\(\left(2+6+15-36\right)\sqrt{3}\)

=\(-13\sqrt{3}\)

1 tháng 8 2018

\(a.\sqrt{19-6\sqrt{2}}=\sqrt{18-2.3\sqrt{2}+1}=3\sqrt{2}-1\)

\(b.\sqrt{21+12\sqrt{3}}=\sqrt{12+2.2\sqrt{3}.3+9}=2\sqrt{3}+3\)

\(c.\sqrt{57-40\sqrt{2}}=\sqrt{32-2.4\sqrt{2}.5+25}=4\sqrt{2}-5\)

\(d.\sqrt{\left(5-2\sqrt{6}\right)\left(4-2\sqrt{3}\right)}=\sqrt{3-2\sqrt{3}.\sqrt{2}+2}.\sqrt{3-2\sqrt{3}+1}=\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\) \(e.\sqrt{21+6\sqrt{6}}+\sqrt{21-6\sqrt{6}}=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\) \(g.\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{4-2.2\sqrt{3}+3}-\sqrt{4+2.2\sqrt{3}+3}=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)

1 tháng 8 2018

a)

=\(\sqrt{18-2.3\sqrt{2}.1+1}\)

\(=\sqrt{\left(3\sqrt{2}-1\right)^2}\)

\(=3\sqrt{2}-1\)

b)

=\(\sqrt{12+2.2\sqrt{3}.3+9}\)

=\(\sqrt{\left(2\sqrt{3}+3\right)^2}\)

=\(2\sqrt{3}+3\)

c)

=\(\sqrt{25-2.5.4\sqrt{2}+32}\)

=\(\sqrt{\left(5-4\sqrt{2}\right)^2}\)

=\(4\sqrt{2}-5\)

d)

\(=\sqrt{\left(3-2.\sqrt{3}.\sqrt{2}+2\right)\left(3-2\sqrt{3}+1\right)}\\ =\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2\left(\sqrt{3}-1\right)^2}\\ =\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}-1\right)\\ =3-\sqrt{3}-\sqrt{6}+\sqrt{2}\)

e)

\(=\sqrt{18+2.3\sqrt{2}.\sqrt{3}+3}+\sqrt{18-2.3\sqrt{2}.\sqrt{3}+3}\\ =\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\\ =3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\\ =6\sqrt{2}\)

g)

\(=\sqrt{4-2.2.\sqrt{3}+3}-\sqrt{4+2.2.\sqrt{3}+3}\\ =\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\\ =2-\sqrt{3}-2-\sqrt{3}\\ =-2\sqrt{3}\)

12 tháng 8 2019

Câu 1,2,3 Ez quá rồi :3

Câu 4:

Tổng quát:

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v

12 tháng 8 2019

Câu 5 ko khác câu 4 lắm :v

Câu 5: 

Tổng quát:

\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v

30 tháng 11 2019

a/ \(A=\sqrt{3^2+2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(A=\sqrt{\left(\sqrt{5}+3\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(A=\sqrt{5}+3+3-\sqrt{5}\text{ vì }\left(3-\sqrt{5}>0\right)\)

\(A=6\)

b/\(B^2=\left(2-\sqrt{3}\right)\left(8+2\sqrt{12}\right)\)

\(B^2=16+4\sqrt{12}-8\sqrt{3}-6\sqrt{36}\)

\(B^2=16-6\sqrt{36}+4\sqrt{12}-8\sqrt{3}\)

\(B^2=4\)

\(\Rightarrow B=2\)

c/ \(C=\frac{2\left(\sqrt{3}+1\right)-\sqrt{3}\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)'

\(C=\frac{2\sqrt{3}+2-2\sqrt{3}}{2}\)

\(C=1\)

21 tháng 6 2023

\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)