Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 : a) 2x-18=2^3*3^2
2x-18=8*9
2x-18=72
2x=72+18
2x=90
x=90:2
x=45
tick đi mình làm tiếp cho
a)
2x-18=2^3.3^2
<=>2x-18=72
<=>2x=90
<=>x=45
b)
2154-(3x-129)=9^7.9^15:9^20+1827
<=>2154-3x+129=9^2+1927
<=>2283-3x=1908
<=>3x=375
<=>x=125
a, ( - 168 ) + 72 . ( - 168 ) + ( - 168 ) . 27
= ( - 168 ) + ( - 12096 ) + ( - 4536 )
= - 12264 + - 4536
= - 16800
b, 22 . ( - 3 ) - ( 110 + 8 ) : ( - 3 )2
= 4 . ( - 3 ) - ( 1 + 8 ) : 9
= ( - 12 ) - 9 : 9
= ( - 12 ) - 1
= - 13
c, ( - 1075 ) - ( 29 - 1075 )
= ( - 1075 ) - ( - 1046 )
= - 29
d, ( - 9 ) + ( - 11 ) + 21 + ( - 1 )
= - 20 + 21 + ( - 1 )
= 1 + - 1
= 0
e, 30 + 12 + ( - 20 ) + ( - 12 ) - ( 30 - 20 ) + ( 12 - 12 )
= 42 + ( - 20 ) + ( - 12 ) - 10 + 0
= 22 + ( - 12 ) - 10 + 0
= 10 - 10 + 0
= 0 + 0
= 0
g, ( 13 - 135 + 49 ) - ( 13 + 49 )
= [( - 122 ) + 49 ] - 62
= ( - 73 ) - 62
= - 135
h, 35 - { 12 - [ ( - 14 ) + ( - 2 ) } ]
= 35 - { 12 - ( - 16 ) }
= 35 - 28
= 7
Bài 2:
a. x - 35 = ( - 12 ) - 3
x - 35 = - 15
x = - 15 + 35
x = 20
b, \(\frac{1}{4}\)+ \(\frac{1}{3}\): 3x = - 5
\(\frac{3}{12}+\frac{4}{12}\): 3x = - 5
\(\frac{7}{12}\): 3x = - 5
3x = \(\frac{7}{12}\): - 5
3x = \(\frac{-7}{60}\)
x = \(\frac{-7}{60}\): 3
x = \(\frac{-7}{180}\)
c,2x-1 = 8
2x-1 = 24
x = 4 + 1
x = 5
Bài 1 :
a, Ta có : \(\left(-123\right)+\left|-13\right|+\left(-7\right)\)
= \(\left(-123\right)+13+\left(-7\right)=\left(-117\right)\)
b, Ta có : \(\left|-10\right|+\left|45\right|+\left(-\left|-455\right|\right)+\left|-750\right|\)
= \(10+45-455+750=350\)
c, Ta có : \(-\left|-33\right|+\left(-15\right)+20-\left|45-40\right|-57\)
= \(\left(-33\right)+\left(-15\right)+20-5-57=-90\)
\(5.3^3+8^2:2^2\)
\(=5.27+16\)
\(=135+16\)
\(=151\)
b) \(35:\left\{250:\left[114-\left(26-18\right)^2\right]\right\}\)
\(=35:\left\{250:\left[114-8^2\right]\right\}\)
\(=35:\left\{250:\left[114-64\right]\right\}\)
\(=35:\left\{250:50\right\}\)
\(=35:5\)
\(=7\)
a) \(\frac{18^4.3^2.8^3}{27^3.16^2}=\frac{\left(2.3^2\right)^4.3^2.\left(2^3\right)^3}{\left(3^3\right)^3.\left(2^4\right)^2}=\frac{2^4.2^9.3^8.3^2}{3^9.2^8}=\frac{2^{13}.3^{10}}{3^9.2^8}=3.2^5=96\)
b) \(\frac{35^5.9^3.8^5}{81^4.32^5}=\frac{35^5.\left(3^2\right)^3.\left(2^3\right)^5}{\left(3^4\right)^4.\left(2^5\right)^5}=\frac{35^5.3^6.2^{15}}{3^{16}.2^{25}}=\frac{35^5}{3^{10}.2^{10}}=\frac{35^5}{6^{10}}\)
c) \(\frac{48^5.18^2}{81^2.34^4}=\frac{\left(2^4.3\right)^5.\left(2.3^2\right)^2}{\left(3^4\right)^2.\left(2.17\right)^4}=\frac{2^{20}.3^5.2^2.3^4}{3^8.2^4.17^4}=\frac{2^{22}.3^9}{3^8.2^4.17^4}=\frac{2^{18}.3}{17^4}\)
d) \(\frac{54^7.27^3.16^2}{243^2.64^3}=\frac{\left(2.3^3\right)^7.\left(3^3\right)^3.\left(2^4\right)^2}{\left(3^5\right)^2.\left(2^6\right)^3}=\frac{2^7.3^{21}.3^9.2^8}{3^{10}.2^{18}}=\frac{2^{15}.3^{30}}{3^{10}.2^{18}}=\frac{3^{20}}{2^3}\)