Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x = \(\frac{1}{2}\), y = -100 biểu thức có giá trị là -2 . \(\frac{1}{2}\). (-100) = 100.
\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\)(1)
Thay \(x=\frac{1}{2};y=-100\) vào (1), ta có:
\(-2.\frac{1}{2}.-100=100\)
\(2.A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\\ Thayx=\frac{1}{2};y=-100vàoAđược:A=-2.\frac{1}{2}.\left(-100\right)=100\)
\(3.x\left(5-2x\right)+2x\left(x-1\right)=15\Leftrightarrow5x-2x^2+2x^2-2x=15\Leftrightarrow3x=15\Leftrightarrow x=5\)
a) \(x\left(x-y\right)+y\left(x+y\right)=x^2-xy+xy+y^2=x^2+y^2\) (1)
Thế x = -6 và y = 8 vào (1) ta được:
\(\left(-6\right)^2+8^2=36+64=100\)
b) \(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy\)
\(=-2xy\) (2)
Thế x = 1212 và y = -100 vào (2) ta được: \(\left(-2\right).1212.\left(-100\right)=242400\)
a, \(x\left(x-y\right)+y\left(x+y\right)=x^2-xy+xy+y^2=x^2+y^2\left(1\right)\)
Thay \(x=-6,y=8\) vào (1), ta có:
\(x\left(x-y\right)+y\left(x+y\right)=6^2+8^2=36+64=100\)
b, \(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\left(2\right)\)
Thay \(x=1212,y=-100\) vào (2), ta được:
\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=\left(-2\right).1212.\left(-100\right)=242400\)
Chúc bạn học tốt.
a )
\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)
\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)
\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)
Thay \(x=-10;y=5\)vào A , ta được :
\(A=-10\left(-10+5\right)\)
\(=-10.-5=50\)
Vậy \(A=50\)
a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)
= x4 + xy - x4 + x2y - x2y + x2
= xy + x2
Thay x = –10 và y = 5 vào (1), ta được:
A = -10.5 + (-10)2 = -50 + 100 = 50
Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.
b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)
= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)
Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)
⇒x = 3/5
c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)
= (x – 1)2 + (y + 2)2
Vậy (x – 1)2 + (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0
⇒ x = 1 hoặc y = -2
\(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x\left(x^2-y\right)-x^2\left(x+y\right)+xy\left(x-1\right)\)
\(=x\left(x^2-y-x^2-xy+xy-y\right)=x.\left(-2y\right)-2xy\)
Thay x,y vào và tính.
a) x(x+y)+y(x-y)
= x^2 + xy+xy-y^2
= -(x^2 -2xy+y^2)
=-(x-y)^2
Thay x=-8; y=7
= -(-8-7)^2
=-(-15)^2
=-225
\(=x^4-xy+xy+x^2y-x^4-x^2y+3xy-xy.\)
\(=2xy\)
Thay x = 1/4 , y = - 2005 ta được: 2xy = 2.1/4 . ( - 2005 ) = -2005/2
a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2
với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100
b) x(x2 – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2
Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.