Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^4-2^6.3^3}=\dfrac{2^3.3^3.\left(2+3\right)}{2^5.3^3.\left(3-2\right)}=\dfrac{2^3.3^3.5}{2^5.3^3.1}\)
\(=\dfrac{5}{2^2}=\dfrac{5}{4}\)
Đặt \(A=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
\(1A=1-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}\right)-\dfrac{1}{22}\)\(1A=1-\dfrac{1}{22}\)
\(1A=\dfrac{22}{22}-\dfrac{1}{22}\)
\(1A=\dfrac{21}{22}\)
\(\dfrac{21}{22}\) không thể rút gọn
\(A=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{6}{16\cdot22}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\\ =1-\dfrac{1}{22}\\ =\dfrac{21}{22}\)
Vậy \(A=\dfrac{21}{22}\)
Bài 1: Tìm số đối.
- Số đối của \(\dfrac{1}{2}\) là \(-\dfrac{1}{2}\)
- Số đối của \(-\dfrac{3}{4}\) là \(\dfrac{3}{4}\)
- Số đối của \(\dfrac{7}{-12}\) là \(\dfrac{7}{12}\)
Bài 2: Thu gọn:
\(\dfrac{2^4.3^3-2^4.3^3}{2^5.3^4-2^6.3^3}=\dfrac{0}{2^5.3^4-2^6.3^3}=0\)
P = 1/49+2/48+3/47+...+48/2+49/1
Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta được
P=(1/49+1)+(2/48+1)+...+(48/2+1)+1
P= 50/49+50/48+....+50/2+50/50
Đưa ps cuối lên đầu
P=50/50+50/49+50/48+...+50/2
=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)
=50S
=> S/P=1/50
a, \(-1\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{1}{2}+2\dfrac{1}{6}\\ =-\dfrac{5}{3}+\dfrac{3}{4}-\dfrac{1}{2}+\dfrac{13}{6}\\ =\dfrac{-5.4+3.3-1.6+13.2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
b, \(\dfrac{11}{50}\left(-17\dfrac{1}{2}\right)-\dfrac{11}{50}.82\dfrac{1}{2}\\ =\dfrac{11}{50}.\left(-17\dfrac{1}{2}-82\dfrac{1}{2}\right)=\dfrac{11}{50}.\left(-100\right)=-22\)
a) \(-1\dfrac{2}{3}\) + \(\dfrac{3}{4}\) \(-\) \(\dfrac{1}{2}\) + \(2\dfrac{1}{6}\)
=\(-\dfrac{5}{3}\) + \(\dfrac{3}{4}\) \(-\) \(\dfrac{1}{2}\) + \(\dfrac{13}{6}\)\()\)
=\(-\) \(\dfrac{20}{12}\) + \(\dfrac{9}{12}\) \(-\) \(\dfrac{6}{12}\) + \(\dfrac{26}{12}\)
= \((\)\(\dfrac{-20}{12}\) + \(\dfrac{26}{12}\) \()\) + \((\) \(\dfrac{9}{12}\) \(-\) \(\dfrac{6}{12}\) \()\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)
= \(\dfrac{3}{4}\)
b)\(\dfrac{11}{50}\) \((\) \(-17\dfrac{1}{2}\) \()\) \(-\) \(\dfrac{11}{50}\) .\(82\dfrac{1}{2}\)
= \(\dfrac{11}{50}\) . \(-\dfrac{35}{2}\) \(-\) \(\dfrac{11}{50}\) . \(\dfrac{165}{2}\)
= \(\dfrac{11}{50}\). \((\) \(-\dfrac{35}{2}\) \(-\) \(\dfrac{165}{2}\) \()\)
=\(\dfrac{11}{50}\). \(-\)\(100\)
= \(-22\)
Chúc bạn học thật tốt nha !
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)