Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{3}x^2y+xy^2-xy+\dfrac{1}{2}xy^2-5xy-\dfrac{1}{3}x^2y=\dfrac{3}{2}xy^2-6xy\)
Thay x = 2 ; y = 1 ta được
\(\dfrac{3}{2}.2.1-6.2.1=3-12=-9\)
\(\Leftrightarrow P=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)-\left(xy+5xy\right)\)
\(\Leftrightarrow P=\frac{3}{2}xy^2-6xy\)
Thay \(x=0,5;y=1\)vaof P; dc:
\(P=\frac{3}{2}\cdot0,5-6.0,5=\frac{1}{2}\left(\frac{3}{2}-\frac{12}{2}\right)=\frac{1}{2}\cdot\frac{-9}{2}=-\frac{9}{4}\)
\(a)\left(-3x^2y-2xy^2+6\right)+\left(-x^2y+5xy^2-1\right)\)
\(=-3x^2y-2xy^2+6+-x^2y+5xy^2-1\)
\(=\left(-3x^2y-x^2y\right)+\left(-2xy^2+5xy^2\right)+\left(6-1\right)\)
\(=-4x^2y+3xy^2+5\)
\(b)\left(1,6x^3-3,8x^2y\right)+\left(-2,2x^2y-1,6x^3+0,5xy^2\right)\)
\(=1,6x^3-3,8x^2y+-2,2x^2y-1,6x^3+0,5xy^2\)
\(=\left(1,6x^3-1,6x^3\right)+\left(-3,8x^2y+-2,2x^2y\right)+0,5xy^2\)
\(=-6x^2y+0,5xy^2\)
\(c)\left(6,7xy^2-2,7xy+5y^2\right)-\left(1,3xy-3,3xy^2+5y^2\right)\)
\(=6,7xy^2-2,7xy+5y^2-1,3xy+3,3xy^2-5y^2\)
\(=\left(6,7xy^2+3,3xy^2\right)+\left(-2,7xy-1,3xy\right)+\left(5y^2-5y^2\right)\)
\(=10xy^2+-4xy\)
\(=10xy^2-4xy\)
\(d)\left(3x^2-2xy+y^2\right)+\left(x^2-xy+2y^2\right)-\left(4x^2-y^2\right)\)
\(=3x^2-2xy+y^2+x^2-xy+2y^2-4x^2+y^2\)
\(=\left(3x^2+x^2-4x^2\right)+\left(-2xy-xy\right)+\left(y^2+2y^2+y^2\right)\)
\(=-3xy+4y^2\)
\(e)\left(x^2+y^2-2xy\right)-\left(x^2+y^2+2xy\right)+\left(4xy-1\right)\)
\(=x^2+y^2-2xy-x^2-y^2-2xy+4xy-1\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(-2xy-2xy+4xy\right)-1\)
\(=-1\)
\(Q=7x^2y-2xy+\dfrac{1}{2}x^2y-xy+11xy-\dfrac{1}{3}x+\dfrac{1}{3}+\dfrac{2}{3}x-\dfrac{1}{6}\)
\(Q=\dfrac{15}{2}x^2y+8xy-x-\dfrac{1}{6}\)
Q = ( 7x\(^2\)y + \(\dfrac{1}{2}\)x\(^2\)y ) + ( -2xy - xy + 11xy ) +( -\(\dfrac{1}{3}\)x + \(\dfrac{2}{3}\)x ) + ( -\(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) )
= \(\dfrac{15}{2}\)x\(^2\)y + 8xy + \(\dfrac{1}{3}\)x _ \(\dfrac{1}{2}\)
\(A=2xy^2+3x^2y-x^3+x^2y-xy^2+2x^3\)
\(=\left(2xy^2-xy^2\right)+\left(3x^2y+x^2y\right)+\left(-x^3+2x^3\right)\)
\(=xy^2+4x^2y+x^3\)
\(\Rightarrow\)Bậc của đa thức là \(3\)
a) Ta có: \(A=5xy-y^2+xy+4xy+3x-2y\)
\(=10xy-y^2+3x-2y\)
b) Ta có: \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\)
\(=\frac{-1}{3}x^4y^2\)(*)
Thay x=2 và \(y=\frac{1}{4}\) vào biểu thức (*), ta được:
\(\frac{-1}{3}\cdot2^4\cdot\left(\frac{1}{4}\right)^2\)
\(=\frac{-1}{3}\cdot16\cdot\frac{1}{16}=\frac{-1}{3}\)
Vậy: \(-\frac{1}{3}\) là giá trị của biểu thức \(\left(-\frac{1}{2}xy^2\right)\cdot\left(\frac{2}{3}x^3\right)\) tại x=2 và \(y=\frac{1}{4}\)
\(Q=5x^2y-3xy+\dfrac{1}{2}x^2y-xy+5xy-\dfrac{1}{3}x+\dfrac{1}{2}+\dfrac{2}{3}x-\dfrac{1}{4}\)
\(Q=\left(5-3+\dfrac{1}{2}+5-\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{2}{3}-\dfrac{1}{4}\right)+\left(x^2xx^2xxx\right)+\left(yyyyy\right)+\left(-x\right)\)
\(Q=\dfrac{97}{12}+x^{^{ }8}+y^5+\left(-x\right)\)
\(Q=\dfrac{97}{12}+x^7+y^5\)
\(Q=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)=x^2+2xy+y^3\)
\(P=\left(\dfrac{1}{3}x^2y-\dfrac{1}{3}x^2y\right)+\left(xy^2+\dfrac{1}{2}xy^2\right)-\left(xy+5xy\right)=\dfrac{3}{2}xy^2-6xy\)