K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

a) \(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)

\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)

\(=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)

\(=0\)

b) \(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}-2^{n+1}\right)-3^{2n+2}+2^{2n+2}\)

\(=3^{2n+2}-2^{2n+2}-3^{2n+2}+2^{2n+2}\)

\(=0\)

11 tháng 7 2018

a,

\(A=2^{n-1}+2.2^{n+3}-8.2^{n-4}-16.2^n\)

\(=2^{n-1}+2^{n+3+1}-2^{n-4+3}-2^{n+4}\)

\(=2.2^{n-1}+2.2^{n+4}=2^n+2^{n+5}\)

b,

\(B=\left(3^{n+1}-2.2^n\right)\left(3^{n+1}+2.2^n\right)-3^{2n+2}+\left(8.2^{n-2}\right)^2\)

\(=\left(3^{n+1}\right)^2-\left(2.2^n\right)^2-\left(3^{n+1}\right)^2+\left(2^{n-2+3}\right)^2\)

\(=-2^{n+1}+2^{n+1}=0\)

5 tháng 7 2018

\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)

\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)

\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)

\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).

Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N

Nên ta có ĐPCM.

AH
Akai Haruma
Giáo viên
5 tháng 7 2018

Lời giải:
Đặt biểu thức đã cho là $A$

Ta viết lại biểu thức thành:

\(A=(3^{n+1}-2^{n+1})(3^{n+1}+2^{n+1}).3^{2(n+1)}+(2^{n+1}.3^{n+1})^2\)

Đặt \(3^{n+1}=a; 2^{n+1}=b\Rightarrow A=(a-b)(a+b)a^{2}+(ba)^2\)

\(=(a^2-b^2)a^2+a^2b^2=a^4=(a^2)^2\)

Do đó biểu thức đã cho là một số chính phương.

Ta có đpcm.

15 tháng 12 2016

= 0 nha bạn 

\(A=2^{n-1}+2^{n+4}-2^3\cdot2^{n-4}-2^4\cdot2^n\)

\(A=2^{n-1}+2^{n+4}-2^{n-1}-2^{n+4}\)

\(A=0\)

17 tháng 7 2016

Xét \(C=3^{n+1}+4.2^{n-1}-81.3^{n-3}-8.2^{n-2}+1\)

\(=3^{n+1}+2^2.2^{n-1}-3^4.3^{n-3}-2^3.2^{n-2}+1\)

\(=3^{n+1}+2^{n+1}-3^{n+1}-2^{n+1}+1=1\)

Xét \(D=\left(2^n+1\right)^2+\left(2^n-1\right)^2-2\left(4^n+1\right)=2^{2n}+2.2^n+1+2^{2n}-2.2^n+1-2.4^n-2\)

\(=4^n+4^n-2.4^n=2.4^n-2.4^n=0\)

Vậy C > D

17 tháng 7 2016

bạn nói dùm mình chỗ từ =\(3^{n+1}+2^2.2^{n-1}-3^4.3^{n-3}-2^3.2^{n-2}+1\) 

                                      =\(3^{n+1}+2^{n+1}-3^{n+1}-2^{n+1}+1=1\) 

18 tháng 12 2016

Sai thì thôi nha

Từ M ta có:

\(M=2^n-2.2^n+8+2.2^n-16-16.2^n\)

\(M=2^n.\left(-2+2+2-16\right)+8-16\)

M=\(2^n.\left(-14\right)-8\)

Vậy thu gọn M ta được....

 

18 tháng 12 2016

0