Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(=x^3-6x^2+12x-8-8x^3-36x^2-54x-27+7\left(x-1\right)^3\)
\(=-7x^3-42x^2-42x-35+7x^3-21x^2+21x-7\)
\(=-63x^2-21x-42\)
2: \(=x^3+125-\left(x^3-8\right)=125+8=133\)
3: \(=8x^3-27-8x^3-12x^2-6x-1=-12x^2-6x-28\)
1> 3x(x-2)-2x(2x-1)=(1-x)(1+x)
⇔\(3x^2\)-6x-\(4x^2\)+2x=1-\(x^2\)
⇔-1\(x^2\) - 4x= 1- \(x^2\)
⇔ -1\(x^2\) -4x+ \(x^2\) = 1
⇔-4x=1
⇔ x = \(\dfrac{-1}{4}\)
\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)
\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)
\(=2a^2.2b^2-4a^2b^2=0\)
\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)
\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)
\(=\left[4-11x\right]^2\)
\(=16-88x+121x^2\)
chúc bn học tốt
1.\(\left(x-5\right).\left(x+5\right)-\left(x+3\right)^2=2x-3\)
\(\Leftrightarrow x^2-25-\left(x^2+6x+9\right)=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9=2x-3\)
\(\Leftrightarrow x^2-25-x^2-6x-9-2x+3=0\)
\(\Leftrightarrow-8x-31=0\)
\(\Leftrightarrow x=\dfrac{-31}{8}\)
\(\left(x-4\right)^3-\left(x-5\right)\left(x^2+5x+25\right)=\left(x+2\right)\left(x^2-2x+4\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-\left(x^3-5^3\right)=\left(x^3+2^3\right)-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x-4\right)^3-x^3+5^3=x^3+2^3-\left(x+4\right)^3\)
\(\Leftrightarrow\left(x^3-12x^2+48x-64\right)-x^3+5^3=x^3+2^3-\left(x^3+12x^2+48x+64\right)\)
\(\Leftrightarrow x^3-12x^2+48x-64-x^3+5^3=x^3+2^3-x^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-64+5^3=2^3-12x^2-48x-64\)
\(\Leftrightarrow-12x^2+48x-61=-12x^2-48x-56\)
\(\Leftrightarrow96x=-117\)
\(\Leftrightarrow x=\dfrac{-117}{96}=\dfrac{-39}{32}\)
1: \(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-2\left(4x+3\right)^2+8\left(x+3\right)^2\)
\(=24x^2+2-2\left(16x^2+24x+9\right)+8\left(x^2+6x+9\right)\)
\(=24x^2+2-32x^2-48x-18+8x^2+48x+72\)
=56
2: \(=\left(4x^2+4x+1\right)\left(x-1\right)-2\left(x^3-6x^2+12x-8\right)+x\left(3-2x\right)\left(3+x\right)-\left(3x-3\right)^2\)
\(=4x^3-3x-1-2x^3+12x^2-24x+16+x\left(9-3x-2x^2\right)-\left(3x-3\right)^2\)
\(=2x^3+12x^2-27x+15+9x-3x^2-2x^3-9x^2+18x-9\)
\(=6\)
\(a,4x^2-\left(3x+1\right)\left(2x-1\right)=2\left(x-3\right)^2\)
\(\Leftrightarrow4x^2-\left(6x^2-3x+2x-1\right)=2\left(x^2-6x+9\right)\)
\(\Leftrightarrow4x^2-6x^2+x+1-2x^2+12x-18=0\)
\(\Leftrightarrow-4x^2+13x-17=0\)
\(\Leftrightarrow-4\left(x^2-\dfrac{13}{4}x+\dfrac{169}{64}\right)-\dfrac{103}{16}=0\)
\(\Leftrightarrow-4\left(x-\dfrac{13}{8}\right)^2=\dfrac{103}{16}\)
\(\Leftrightarrow\left(x-\dfrac{13}{8}\right)^2=\dfrac{-103}{64}\Rightarrow\) pt vô nghiệm
\(b,\left(5x-1\right)\left(x+1\right)-\left(2x-1\right)\left(2x+1\right)=x.\left(x+1\right)\)\(\Leftrightarrow5x^2+5x-x-1-\left(4x^2-1\right)=x^2+x\)
\(\Leftrightarrow5x^2+5x-x-1-4x^2+1-x^2-x=0\) \(\Leftrightarrow3x=0\Rightarrow x=0\)
\(c,7x^2-\left(2x-3\right)^2=1+3\left(x+2\right)^2\)
\(\Leftrightarrow7x^2-\left(4x^2-12x+9\right)=1+3\left(x^2+4x+4\right)\)
\(\Leftrightarrow7x^2-4x^2+12x-9=1+3x^2+12x+12\)\(\Leftrightarrow7x^2-4x^2+12x-9-1-3x^2-12x-12=0\)\(\Leftrightarrow-22=0\) ( vô lí)
Vậy phương trình vô nghiệm
1. (2x - 3) . (2x+3) - 4 . (x+ 2)2 = 6
[ ( 2x )2 - 32 ] - 4 . ( x2 + 2.x.2 + 22) = 6
4x2 - 9 - 4 . ( x2 + 4x + 4) = 6
4x2 - 9 - 4x2 - 16x - 16 = 6
-16x -25 = 6
x = \(-\dfrac{31}{16}\)
1)
(x-3).(x+3) - (x+1)2
= x2 - 32 - x2 - 2x - 1
= - 2x - 10
2)
(2x - 1)2 - (x +2)2 - (2x - \(\dfrac{1}{2}\))2
= 4x2 - 4x +1 - x2 - 4x - 4 - 4x2 + 2x - \(\dfrac{1}{4}\)
= - x2 - 6x - \(\dfrac{13}{4}\)
= - ( x2 + 6x + \(\dfrac{13}{4}\) )
= - (x2 + 2.3x + 9 - \(\dfrac{23}{4}\))
= - (x + 3)2 + \(\dfrac{23}{4}\)
3)
(2x + 1)3 - (2x -1)3 - 24x2
= (2x -1 + 2)3 - (2x - 1)3 - 24x2
= (2x-1)3 + 3.(2x-1)2.2 + 3.(2x-1).22 + 23 - (2x - 1)3 - 24x2
= 6.(4x2 - 4x + 1) + 24x - 12 +8 - 24x2
= 24x2 - 24x + 6 +24x - 4 - 24x2
= 2
4)
(x-2)3 - (2x + 3)3 - 7.(1 - x)3
= x3 - 3.x2.2 + 3x.22 - 23 - 8x3 + 3.4x2.3 - 3.2x.32 + 33 - 7.(13-3x + 3x2 - x3)
= x3 - 3.x2.2 + 3x.22 - 23 - 8x3 + 3.4x2.3 - 3.2x.32 + 33 - 7 + 21x - 21x2 + 7x3
= x3 - 6x2 + 12x - 8 - 8x3 + 36x2 - 54x2 + 27 - 7 + 21x - 21x2 + 7x3
= - 45x2 + 33x + 12
= - 45(x2 - \(\dfrac{33}{45}x-\dfrac{4}{15}\))
= \(-45.\left(x^2-2.\dfrac{11}{30}.x+\dfrac{121}{900}-\dfrac{361}{900}\right)\)
= \(-45.\left(x-\dfrac{11}{30}\right)^2+\dfrac{361}{20}\)
1. \(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3+125-\left(x^3-8\right)=x^3+125-x^3+8=133\)
1,
\(\left(x+5\right)\left(x^2-5x+25\right)-\left(x-2\right)\left(x^2+2x+4\right)\\ =\left(x^3+5^3\right)-\left(x^3-2^3\right)\\ =x^3+125-x^3+8\\ =\left(x^3-x^3\right)+\left(125+8\right)\\ =133\)
b,
\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+1\right)^3\\ =\left[\left(2x\right)^3-3^3\right]-\left[\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x+1+1\right]\\ =\left(8x^3-27\right)-\left(8x^3+12x^2+6x+1\right)\\ =8x^3-27-8x^3-12x^2-6x-1\\ =\left(8x^3-8x^3\right)-\left(12x^2+6x\right)-\left(27+1\right)\\ =-6x\left(2x+1\right)-28\\ =\left(-2\right)\left[3x\left(2x+1\right)+14\right]\)