Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm vầy thôi chứ không chắc chắn đúng hay sai đâu nha.
x^2 - x + 31 = x^2 - 2.x.1/2 + (1/2)^2 + 123/4
= (x - 1/2)^2 + 123/4
Vì (x - 1/2)^2 lớn hơn hoặc bằng 0 nên để biểu thức có giá trị nhỏ nhất thì (x - 1/2)^2 phải bằng 0
Vày biểu thức có giá trị nhỏ nhất bằng: 123/4 khi x=1/2
GTNN của A = x2 - x + 31
=> A = x2 - x + 31 = x ( x - 1 ) + 31
=> Min A = 31 khi :
x ( x - 1 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
=> GTNN A = 31
a) A = \(2x^2+x-1=2\left(x^2+\frac{1}{2}x+\frac{1}{16}\right)\)\(-\frac{9}{8}=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2\ge0\forall x\Leftrightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\forall x\Leftrightarrow A\ge-\frac{9}{8}\)
Dấu = xảy ra \(\Leftrightarrow\)\(x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA =\(-\frac{9}{8}\)khi \(x=-\frac{1}{4}\).
b) B=\(5x-3x^2+2=-3\left(x^2-\frac{5}{3}x+\frac{25}{36}\right)+\frac{49}{12}=-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\)
Vì \(\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2\le0\forall x\Leftrightarrow-3\left(x-\frac{5}{6}\right)^2+\frac{49}{12}\le\frac{49}{12}\forall x\Leftrightarrow B\le\frac{49}{12}\forall x\)
Dấu = xảy ra \(\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy maxB = \(\frac{49}{12}\)khi \(x=\frac{5}{6}\).
pq + q = 13 + q2
<=> p = \(\frac{13+q^2-q}{q}\)
\(S=p\times q=\frac{13+q^2-q}{q}\times q=q^2-q+\frac{1}{4}+\frac{51}{4}=\left(q-\frac{1}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\)
ĐS: 12,75
Lời giải:
Vì $x^3-ax^2+bx-2010$ có 3 nghiệm nguyên dương nên ta có thể viết $x^3-ax^2+bx-2010=(x-m)(x-n)(x-p)$ với $m,n,p$ đôi một phân biệt, là các số nguyên dương- nghiệm của $f(x)$
Khai triển ta có:
$x^3-ax^2+bx-2010=x^3-x^2(m+n+p)+x(mn+mp+np)-mnp$
Đồng nhất hệ số thu được:
\(\left\{\begin{matrix} m+n+p=a\\ mnp=2010\end{matrix}\right.\)
Không mất tổng quát giả sử $m>n>p$ thì $m^3> mnp=2010\Rightarrow m\geq 12$ và $m= \frac{2010}{np}\leq \frac{2010}{1.2}=1005$
$m$ lại là ước của $2010$ nên ta suy ra $m$ có thể nhận các giá trị:
$m=134; m=15; m=201; m=335;m=402;m=30; m=1005; m=670$
Từ đây ta có những bộ số thỏa mãn là:
$(m,n,p)=(134; 15; 1); (134; 5;3); (201; 5;2); (201; 10;1); (335; 6; 1); (335; 3;2); (402; 5;1); (1005; 2;1)$
Từ đây kiểm tra xem bộ nào thỏa $a=m+n+p$ min ta thấy $a_{\min}=134+5+3=142$