K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Mệnh đề đảo của mệnh đề A ⇒ B là mệnh đề B ⇒A.

Ví dụ 1: A ⇒ B = “Nếu một số nguyên chia hết cho 3 thì nó có tổng các chữ số chia hết cho 3”. Mệnh đề này đúng.

Mệnh đề đảo: B ⇒A = “Nếu một số nguyên có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3”. Mệnh đề này cũng đúng.

Ví dụ 2: A ⇒ B = “Nếu một tứ giác là hình thoi thì nó có hai đường chéo vuông góc với nhau”. Mệnh đề này đúng.

Mệnh đề đảo: B ⇒A = “Nếu một tứ giác có hai đường chéo vuông góc với nhau thì tứ giác ấy là một hình thoi”. Mệnh đề này sai.


4 tháng 7 2017

+ Mệnh đề đảo của mệnh đề A ⇒ B là mệnh đề B ⇒ A.

+ Nếu mệnh đề A ⇒ B đúng thì mệnh đề B ⇒ A có thể đúng hoặc sai.

Ví dụ:

+ Mệnh đề A: “ΔABC là tam giác đều”.

Mệnh đề B: “ΔABC có AB = BC = CA”

Mệnh đề A ⇒ B là mệnh đề đúng và mệnh đề B ⇒ A cũng là mệnh đề đúng.

+ Mệnh đề A: “ΔABC là tam giác đều”

Mệnh đề B: “ΔABC có AB = BC ”

Mệnh đề A ⇒ B là mệnh đề đúng nhưng mệnh đề B ⇒ A sai.

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\) "Nếu a có tận cùng bằng 0 thì a chia hết cho 5".

Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)"Nếu a chia hết cho 5 thì a có tận cùng bằng 0"

b) \(\left(P\Rightarrow Q\right):\) đúng. \(\left(Q\Rightarrow P\right):\) sai

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.

b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"

c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right)\) : " Nếu AB = AC thì tam giác ABC cân"

Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)" Nếu tam giác ABC cân thì AB = AC"

b) \(\left(P\Rightarrow Q\right)\) : đúng, \(\left(Q\Rightarrow P\right):\)sai

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x^2=1\) thì \(x=1\)". Mệnh để đảo là "Nếu \(x=1\) thì \(x^2=1\)"

b) Mệnh đề đảo "Nếu \(x=1\) thì \(x^2=1\) là đúng

c) Với \(x=-1\) thì mệnh đề \(\left(P\Rightarrow Q\right):\)sai

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình bình hành thì nó có hai đường chéo cắt nhau tại trung điểm của mỗi đường”.

Mệnh đề này đúng vì “hai đường chéo cắt nhau tại trung điểm của mỗi đường” là tính chất của hình hình hành.

b) Mệnh đề đảo của mệnh đề \(P \Rightarrow Q\) là mệnh đề \(Q \Rightarrow P\), được phát biểu là: “Nếu tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm của mỗi đường thì nó là hình bình hành”.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì  \(0 < a < b\)”

b) Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)”

c) Mệnh đề \(P \Rightarrow Q\) là: “Nếu \({a^2} < {b^2}\) thì  \(0 < a < b\)” sai,

Chẳng hạn \(a =  2;\;b = -3\) ta có: \({2^2} < {( - 3)^2}\) nhưng không suy ra \(0<2<-3\).

 Mệnh đề \(Q \Rightarrow P\) là: “Nếu \(0 < a < b\) thì \({a^2} < {b^2}\)” đúng.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

+) Mệnh đề R: “Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)” có dạng \(P \Rightarrow Q\), với

P: “ABC là tam giác đều” và Q: “Tam giác ABC có hai góc bằng \({60^o}\)”

Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay R đúng.

+) Mệnh đề T: “Nếu \(a = 2\) thì \({a^2} - 4 = 0\)” có dạng \(P \Rightarrow Q\), với:

P: “\(a = 2\)” và Q: “\({a^2} - 4 = 0\)”.

Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay T đúng.

b) Mệnh đề \(Q \Rightarrow P\) của hai mệnh đề trên là:

“Nếu ABC có hai góc bằng \({60^o}\) thì nó là tam giác đều”, đúng.

“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai (vì thiếu nghiệm \(a =  - 2\)).

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

P: “tam giác ABC vuông tại A”

Q: “tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)”

+) Mệnh đề \(Q \Rightarrow P\) là “Nếu tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\)thì tam giác ABC vuông tại A”

+) Từ định lí Pytago, ta có:

Tam giác ABC vuông tại A thì \(A{B^2} + A{C^2} = B{C^2}\)

Và: Tam giác ABC có \(A{B^2} + A{C^2} = B{C^2}\) thì vuông tại A.

Do vậy, hai mệnh đề “\(P \Rightarrow Q\)” và “\(Q \Rightarrow P\)” đều đúng.