Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,592 * là 2
b,595 * là 5
c, 590 * là 0
d,593 * là 3
e,591 * là 1
g,594 * là 4
chỉ là đáp án tham khảo thôi bạn còn nhiều đáp án khác nữaĂĂ
nhưng đây ko phải toán 10 hen
a) A= { 0, 3, 6, 9, 12, 15, 18 }
b) Các phân tử của tập hợp B đều là số chẵn => B là số chẵn
a) A = {0, 3, 6, 9, 12, 15, 18}.
b) B = {x ∈ N / x = n(n+1), n ∈ N, 1 ≤ n ≤ 5}
tìm 1 số có 3 chữ số biết rằng số đó trừ 8 chia hết cho 7 trừ 9 chia hết cho 8 trừ 10 chia hết cho 9
Giải:
Ta có: \(\overline{a85b}⋮9\) hay \(a+b+13⋮9\)
\(\Rightarrow a+b=5\)
\(\Rightarrow a=\left(5+3\right):2=4\)
\(\Rightarrow b=5-4=1\)
Vậy a = 1, b = 4
a) Đặt Sn = n3 + 3n2 + 5n
Với n = 1 thì S1 = 9 chia hết cho 3
Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k) 3
Ta phải chứng minh rằng Sk+1 3
Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= k3 + 3k2 + 5k + 3k2 + 9k + 9
hay Sk+1 = Sk + 3(k2 + 3k + 3)
Theo giả thiết quy nạp thì Sk 3, mặt khác 3(k2 + 3k + 3) 3 nên Sk+1 3.
Vậy (n3 + 3n2 + 5n) 3 với mọi n ε N* .
b) Đặt Sn = 4n + 15n - 1
Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1 9
Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.
Ta phải chứng minh Sk+1 9.
Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1
= 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)
Theo giả thiết quy nạp thì Sk 9 nên 4S1 9, mặt khác 9(5k - 2) 9, nên Sk+1 9
Vậy (4n + 15n - 1) 9 với mọi n ε N*
Giải:
Để \(\overline{5x8}⋮3\Rightarrow13+x⋮3\)
\(\Rightarrow x\in\left\{2;5;8\right\}\)
Vậy \(x\in\left\{2;5;8\right\}\)
thaks bn