Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử cho trước 4 số a, b, c, d
Nếu tính trung bình cộng của 3 số bất kì trong 4 số trên thì ta có 4 số trung bình cộng sau:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
Khi đó ta có tổng của 4 số trung bình cộng là:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
=\(\frac{\left(a+b+c+d\right)x3}{3}=a+b+c+d\)
Do đó tổng của 4 số ở bất cứ lần viết nào cũng luôn bằng tổng của 4 số ban đầu.
Tổng của 4 số ban đầu là:
3 + 6 + 9 + 12 = 30
Tổng 4 số của bạn Toàn viết là:
17/9 + 13/9 + 10 + 47/3 = 29 ( 29 khác 30 )
Do đó bạn Toàn chắc chắn đã tính sai.
Vì theo mình luận lập.
Nếu viết đến 18 chữ số. Tính tổng 18 chữ số đó.
Có các khả năng sau.
Tổng 18 chữ số đó chia hết 9 hoặc chia 9 dư 1 -) 8.
A là người viết số 19.
Sẽ viết như sau.
Nếu tổng 18 chữ số chia hết 9 thì viết chữ số 19 tránh 4 hoặc 5.
+ Nếu chia 9 dư 1 thì chữ số 19 tránh 3,4,5
+ Dư 2 tránh viết 1
+ Dư 4 tránh viết 5
+ Dư 5 viết 4
+ Dư 6 viết 3, 4, 5 ( tránh viết 1,2)
+ Dư 7 viết 2, 3, 4, 5( tránh viết 1)
+ Dư 8 viết 1, 2, 3, 4( tránh viết 5)
Để B viết số 20 thì dù chọn chữ số nào trong 5 chữ số thì cũng không chia hết 9
Mình chỉ thắc mắc trường hợp dư 3
Ta có:
Nếu viết đến 18 chữ số. Tính tổng 18 chữ số đó.
Có các khả năng sau.
Tổng 18 chữ số đó chia hết 9 hoặc chia 9 dư 1 -) 8.
A là người viết số 19.
Sẽ viết như sau.
Nếu tổng 18 chữ số chia hết 9 thì viết chữ số 19 tránh 4 hoặc 5.
+ Nếu chia 9 dư 1 thì chữ số 19 tránh 3,4,5
+ Dư 2 tránh viết 1
+ Dư 4 tránh viết 5
+ Dư 5 viết 4
+ Dư 6 viết 3, 4, 5 ( tránh viết 1,2)
+ Dư 7 viết 2, 3, 4, 5( tránh viết 1)
+ Dư 8 viết 1, 2, 3, 4( tránh viết 5)
Để B viết số 20 thì dù chọn chữ số nào trong 5 chữ số thì cũng không chia hết 9
trường hợp dư 3
Bạn có viết sai một chút ở đề bài. Số đúng phải là: \(66313083693369353016721801214\) (bạn viết thiếu một chữ số \(1\)nằm giữa chữ số \(2\)và chữ số \(8\)).
Ta chú ý rằng số của An thu được phải chia hết cho \(8\)và \(9\).
Để số An thu được chia hết cho \(8\)thì số tạo bởi ba chữ số tận cùng của nó chia hết cho \(8\).
\(\overline{21a}\)chia hết cho \(8\)suy ra \(a=6\).
Số thu được chia hết cho \(9\)nên tổng các chữ số của nó chia hết cho \(9\).
Tổng các chữ số còn lại (ngoại trừ chữ số đầu tiên) là: \(106\).
Để tổng các chữ số chia hết cho \(9\)thì chữ số đầu tiên là chữ số \(2\).
Số đúng là: \(26323083693369353016721801216\).
Bài 1 :
Bài giải : Có hai cách điền :
8 + 7 + 65 + 4 + 3 + 2 + 1 = 90
8 + 7 + 6 + 5 + 43 + 21 = 90
Để tìm được hai cách điền này ta có thể có nhận xét sau :
Tổng 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 ; 90 - 36 = 54.
Như vậy muốn có tổng 90 thì trong các số hạng phải có một hoặc hai số là số có hai chữ số. Nếu số có hai chữ số đó là 87 hoặc 76 mà 87 > 54, 76 > 54 nên không thể được. Nếu số có hai chữ số là 65 ; 65 + 36 - 6 - 5 = 90, ta có thể điền :
8 + 7 + 65 + 4 + 3 + 2 + 1 - 90.
Nếu số có hai chữ số là 54 thì cũng không thể có tổng là 90 được vì 54 + 36 - 5 - 4 < 90.
Nếu số có hai chữ số là 43 ; 43 < 54 nên cũng không thể được.
Nếu trong tổng có 2 số có hai chữ số là 43 và 21 thì ta có 43 + 21 - (4 + 3 + 2 + 1) = 54.
Như vậy ta có thể điền: 8 + 7 + 6 + 5 + 43 + 21 = 90.
Bài 2 :
Bạn giải theo 3 hướng sau đây :
Hướng 1 : Tính S = 1 201/280
Hướng 2 : Khi qui đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số chung này thì 1/2 ; 1/3 ; 1/4 ; 1/5 ; 1/6 ; 1/7 sẽ trở thành các phân số mà tử số là số chẵn, chỉ có 1/8 là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ và mẫu số là số chẵn nên S không phải là số tự nhiên.
Hướng 3 : Chứng minh 5/4 < S < 2
Thật vậy 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 > 6 x 1/8 = 3/4 nên S > 3/4 + 1/2 = 5/4
Mặt khác : 1/4 + 1/5 + 1/6 + 1/7 < 4 x 1/4 = 1 nên S < 1 + 1/2 + 1/3 + 1/8 = 1 + 1/2 + 11/24 <2
Vì 5/4 < S < 2 nên S không phải là số tự nhiên
Giả sử cho trước 4 số a, b, c, d
Nếu tính trung bình cộng của 3 số bất kì trong 4 số trên thì ta có 4 số trung bình cộng sau:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
Khi đó ta có tổng của 4 số trung bình cộng là:
\(\frac{a+b+c}{3},\frac{a+b+d}{3},\frac{a+c+d}{3},\frac{b+d+c}{3}\)
\(=\frac{\left(a+b+c+d\right)x3}{3}=\) a + b + c + d
Do đó tổng của 4 số ở bất cứ lần viết nào cũng luôn bằng tổng của 4 số ban đầu.
Tổng của 4 số ban đầu là:
3 + 6 + 9 + 12 = 30
Tổng 4 số của bạn Toàn viết là:
17/9 + 13/9 + 10 + 47/3 = 29 ( 29 khác 30 )
Do đó bạn Toàn chắc chắn đã tính sai.