Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 - a2x - ay + xy
= (a3 - a2x) - (ay - xy)
= a2(a - x) - y(a - x)
= (a - x)(a2 - y)
\(x^2y+xy^2+x^2z+y^2z+2xyz\)
\(=x^2z+2xyz+y^2z+x^2y+xy^2\)
\(=\left(x^2z+2xyz+y^2z\right)+\left(x^2y+xy^2\right)\)
\(=z.\left(x^2+2xy+y^2\right)+xy.\left(x+y\right)\)
\(=z.\left(x+y\right)^2+xy.\left(x+y\right)\)
\(=\left(x+y\right).\left[z.\left(x+y\right)+xy\right]\)
\(=\left(x+y\right).\left(xz+yz+xy\right)\)
Chúc bạn học tốt!
a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)
\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2-2zx-2yz+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
\(x^2y+xy^2+x^2z+y^2z+2xyz=z\left(x^2+2xy+y^2\right)+xy\left(x+y\right)=z\left(x+y\right)^2+xy\left(x+y\right)=\left(x+y\right)\left[z\left(x+y\right)+xy\right]=\left(x+y\right)\left(zx+zy+xy\right)\)
x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz
=x^2y+xy^2+xyz+x^2z+xz^2+xyz+y^2z+yz^2
=xy(x+y+z)+zx(x+y+z)+yz(y+z)
=x(y+z)(x+y+z)+yz(y+z)
=(y+z)(x^2+xy+zx+yz)
=(x+y)(y+z)(z+x)
t i c k mk nha!!! 565464556756768768787669789789776575656767676945645645654
a, \(x^2y+xy^2+x^2z+xz^2+y^2z+yz^2+2xyz\)
\(=\left(x^2y+xy^2\right)+\left(x^2z+xyz\right)+\left(xz^2+yz^2\right)+\left(yz^2+xyz\right)\)
\(=xy\left(x+y\right)+xz\left(x+y\right)+z^2\left(x+y\right)+yz\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+xz+yz+z^2\right)=\left(x+y\right)[x\left(y+z\right)+z\left(y+z\right)]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
b,\(x^{16}+x^8-2=x^{16}+x^8-1-1=\left(x^{16}-1\right)+\left(x^8-1\right)\)
\(=\left(x^8-1\right)\left(x^8+1\right)+\left(x^8-1\right)=\left(x^8-1\right)\left(x^8+2\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+2\right)=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+2\right)\)c,\(A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left(a+1\right)\left(a+4\right)\left(a+2\right)\left(a+3\right)+1\)\(=\left(a^2+5a+4\right)\left(a^2+5a+6\right)+1\)
Đặt \(a^2+5a+5=k\) thế vào biểu thức A ta có:
\(A=\left(k-1\right)\left(k+1\right)+1=k^2-1+1=k^2=\left(a^2+5a+5\right)^2\)
\(x^3+xy^2-9xz^2-2xyz\)
\(=x\left(x^2+y^2-9z^2-2yz\right)\)
ngắn zậy