Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a.
Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được :
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được :
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại : 1804 + 180 + 18 + 1 = 2003 (đúng)
Nếu số thứ tư là số có một chữ số thì số thứ ba có hai chữ số, số thứ hai có ba chữ số và số thứ tư có bốn chữ số.
Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.
Gọi số thứ nhất là abcd. Theo bài ra ta có:
abcd + abc + ab + a = 2003 nên a = 1
=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003
=> bcd + bc + b = 892 nên b = 8
=> 800 + cd + 80 + c + 8 = 892
=> cd + c = 4
=> c = 0 và d = 4
Số phải tìm là: 1804; 180; 18; 1 .
Cách 1:
Theo đề bài cho ta biết số thứ nhất có 4 chữ số.
Gọi số thứ nhất là abcd, số thứ hai là abc, số thứ ba là ab, số thứ tư là a (a khác 0)
Ta được:
a b c d 1 8 c d 1 8 1 d
+ a b c + 1 8 c + 1 8 1
a b 1 8 1 8
a 1 1
2 0 1 3 2 0 1 3 2 0 1 3
a=1 (a khác 0 nên không thể bằng 2) nên b=8 (b không thể bằng 9. Vì như thế hàng chục và hàng trăm đều có nhớ).
Nếu b=8 thì c=1 (vì tổng các chữ số hàng đơn vị phải bằng 13, không thể bằng 23, vì c<=2). Vậy d=3.
Ta được số thứ nhất: 1813 ; lần lượt là: 181; 18; 1
Cách 2:
Gọi số tự nhiên lớn nhất cần tìm là abcd. Ta có :
abcd + abc + ab + a = 2013
1111 x a + 111 x b + 11 x c + d = 2013
Vì a khác 0 và < 2 (Vì nếu a = 2 thì 1111 x 2 = 2222 > 2013) => a = 1
Vậy 111 x b + 11 x c + d = 2013 - 1111
111 x b + 11 x c + d = 902
11 x c + d lớn nhất = 108 => 111 x b nhỏ nhất = 902 - 108 = 794 => b nhỏ nhất = 8)
Mặt khác 11 x c + d nhỏ nhất = 0 => 111 x b lớn nhất = 902. Vậy b lớn nhất = 8)
Vậy b = 8
=> 11 x c + d = 902 - 111 x 8
=> 11 x c + d = 14.
=> c = 1 và d = 3
Ta có 4 số lần lượt là : 1813 ; 181 ; 18 và 1
Cách 1:
Theo đề bài cho ta biết số thứ nhất có 4 chữ số.
Gọi số thứ nhất là abcd, số thứ hai là abc, số thứ ba là ab, số thứ tư là a (a khác 0)
Ta được:
a b c d 1 8 c d 1 8 1 d
+ a b c + 1 8 c + 1 8 1
a b 1 8 1 8
a 1 1
2 0 1 3 2 0 1 3 2 0 1 3
a=1 (a khác 0 nên không thể bằng 2) nên b=8 (b không thể bằng 9. Vì như thế hàng chục và hàng trăm đều có nhớ).
Nếu b=8 thì c=1 (vì tổng các chữ số hàng đơn vị phải bằng 13, không thể bằng 23, vì c<=2). Vậy d=3.
Ta được số thứ nhất: 1813 ; lần lượt là: 181; 18; 1
Cách 2:
Gọi số tự nhiên lớn nhất cần tìm là abcd. Ta có :
abcd + abc + ab + a = 2013
1111 x a + 111 x b + 11 x c + d = 2013
Vì a khác 0 và < 2 (Vì nếu a = 2 thì 1111 x 2 = 2222 > 2013) => a = 1
Vậy 111 x b + 11 x c + d = 2013 - 1111
111 x b + 11 x c + d = 902
11 x c + d lớn nhất = 108 => 111 x b nhỏ nhất = 902 - 108 = 794 => b nhỏ nhất = 8)
Mặt khác 11 x c + d nhỏ nhất = 0 => 111 x b lớn nhất = 902. Vậy b lớn nhất = 8)
Vậy b = 8
=> 11 x c + d = 902 - 111 x 8
=> 11 x c + d = 14.
=> c = 1 và d = 3
Ta có 4 số lần lượt là : 1813 ; 181 ; 18 và 1
ai tích mình tích lại
Gọi số thứ nhất là ABCD.
Theo điều kiện, ta có:
- Số thứ hai là ABC.
- Số thứ ba là AB.
- Số thứ tư là A.
Từ đó, ta có hệ phương trình: A + B + C + D = 200
A + B + C = 10A + B = 10B + C = D
Ta thử các giá trị của A từ 1 đến 9:
- Khi A = 1, ta có B + C = 11 và D = 11. Nhưng B và C không thể có tổng là 11.
- Khi A = 2, ta có B + C = 22 và D = 22. Nhưng B và C không thể có tổng là 22.
- ...
- Khi A = 9, ta có B + C = 99 và D = 99. Nhưng B và C không thể có tổng là 99.
Vậy không có 4 số tự nhiên thỏa mãn yêu cầu bài toán.
Vì tổng 4 số tự nhiên bằng 2003 nên số thứ nhất chỉ có thể là số có 4 chữ số.
Gọi số thứ nhất là abcd. Theo bài ra ta có:
abcd + abc + ab + a = 2003 nên a = 1
=> 1000 + bcd + 100 + bc + 10 + b + 1 = 2003
=> bcd + bc + b = 892 nên b = 8
=> 800 + cd + 80 + c + 8 = 892
=> cd + c = 4
=> c = 0 và d = 4
Số phải tìm là: 1804; 180; 18 , 1
Đúng thì bảo mk nhé Phương Uyên "xinh đẹp".
Bài giải:
số thứ nhất không thể nhiều hơn 4 vì tổng 4 số băng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư, vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd ( a > 0; abcd < 10 ). số thứ 2, số thứ 3, số thứ 4 lần lượt sẽ là: abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + c = 2003
theo phân tích cấu tạo số ta có:
aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có : a < 2 nên a = 1. thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 ( ** )
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
thay b = 8 vào ( ** ) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
từ đây suy ra c chỉ có thể = 0 và d = 4.
vậy số thứ nhất là1804, số thứ 2 là 180, số thứ 3 là 18 và số thứ 4 là 1.
thử lại: 1804 + 180 + 18 + 1 = 2003 ( đúng )
gọi số thứ 2 là x (x€n*)
=> số thứ 3 là 4x
=> số thứ 1 là 10x
vì trung bình cộng của 3 số là 120 nên ta có: (x+4x+10x):3=120
=>15x=360 =>x=24 =>4x=96 =>10x=240
vậy 3 số cần tìm là 24;96;240
tổng của 3 số là :120*3=360
STN là :360 /(10+4+1)*10=240
STH là :360 /(10+4+1)*1=24
STB là :360 /(10+4+1)*4=96