Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn thêm đấu bằng vào kết quả hộ mình nhé. sửa lại \(2\le m\le4\)
bài 1: bạn chỉ cần giải đen ta làm sao cho nó >=0 .Mình l;àm mẫu câu a nhé:
a) để phương trình có 2 no phân biệt thì \(\Delta\)>=0
\(\Leftrightarrow\left(2m-5\right)^2-\left(m-3\right)\left(5m-11\right)\) >=0
\(\Leftrightarrow-m^{^{ }2}+6m-8\ge0\)
\(\Leftrightarrow2< m< 4\)
vậy 2<m<4 thỏa mãn đề bài
TH1: m+1=0 <=> m=-1
Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại
TH2: m+1 khác 0 <=> m khác -1
Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x
<=> {a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0{a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0
<=>{m>−1m2−2m−3≥0⇔⎧⎪⎨⎪⎩m>−1[m<−1m>3⇔m>3{m>−1m2−2m−3≥0⇔{m>−1[m<−1m>3⇔m>3
Vậy m>3 thì...
TH1: m+1=0 <=> m=-1
Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại
TH2: m+1 khác 0 <=> m khác -1
Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x
<=> \(\left\{{}\begin{matrix}a>0\\\Delta'\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-\left(m+1\right)\right]^2-4\left(m+1\right)\le0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m>-1\\m^2-2m-3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m< -1\\m>3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m>3\)
Vậy m>3 thì...
a/ từ yc đề bài => \(2x^2+\left(m-1\right)x+1-m\ge0\)
nghiệm đúng với mọi x thuộc R
=> \(\Delta\le0\Leftrightarrow\left(m-1\right)^2-4\cdot2\left(1-m\right)\le0\)
\(\Leftrightarrow m^2+2m-7\le0\)
\(\Leftrightarrow m\in\left[-1-2\sqrt{2};-1+2\sqrt{2}\right]\)
b/ x2 - (2m-1)x + 2m-2 = 0
để pt có 2 nghiệm pb => \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)>0\)
\(\Leftrightarrow4m^2-12m+9>0\Leftrightarrow\left(2m-3\right)^2>0\Leftrightarrow m\ne\frac{3}{2}\)
=> Gọi 2 nghiệm của pt là x1, x2 (x1<x2)
tập nghiệp của bpt đề cho là: \(S=\left[x_1;x_2\right]\)
theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề ta có: \(\left|x_1-x_2\right|=5\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=25\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=25\)
\(\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)=25\)
\(\Leftrightarrow4m^2-12m-16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)(tm)
vậy......
d/
\(\left\{{}\begin{matrix}m\ne0\\\Delta'=\left(m-1\right)^2-m\left(m-3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m+1< 0\end{matrix}\right.\)
\(\Rightarrow m< -1\)
e/
\(\Delta=\left(m+1\right)^2-4\left(m-1\right)< 0\)
\(\Leftrightarrow m^2-2m+5< 0\)
\(\Leftrightarrow\left(m-1\right)^2+4< 0\)
Không tồn tại m thỏa mãn
f/
\(m=1\) pt vô nghiệm (thỏa mãn)
Với \(m\ne1\)
\(\Delta'=\left(m-1\right)^2+\left(m-1\right)< 0\)
\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)
Vậy \(0< m\le1\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2-2m\left(x+\dfrac{1}{x}\right)+1=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-2m\left(x+\dfrac{1}{x}\right)-1=0\)
x+1/x>=2
Để phương trình có nghiệm thì (-2m)^2-4*1*(-1)>=0
=>4m^2+4>=0(luôn đúng)
ĐỀ bÀI \(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2m\left(x+\frac{1}{x}\right)-1=0\left(1\right)\)
đặt \(t=x+\frac{1}{x},\left|t\right|\ge2\)
ta có \(t^2-2mt-1=0\left(2\right)\)
PT(2) luôn có 2 nghiệm \(t_1< 0< t_2\)=> PT (1) có nghiệm khi zà chỉ khi PT(2) có ít nhất 1 nghiệm t sao cho \(\left|t\right|\ge2\)
hay ít nhất 2 số 2 zà -2 phải nằm giữa 2 nghiệm (t1) zà (t2)
hay \(\orbr{\begin{cases}f\left(2\right)\le0\\f\left(-2\right)\le0\end{cases}=>\orbr{\begin{cases}3-4m\le0\\3+4m\le0\end{cases}=>\orbr{\begin{cases}m\ge\frac{3}{4}\\m\le-\frac{3}{4}\end{cases}}}}\)
#Quá Khứ . IS !