Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)
Để BPT vô nghiệm
\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)\le0\)
\(\Leftrightarrow m^2-4m-12\le0\)
\(\Rightarrow-6\le m\le2\)
Đáp án C
ĐKXĐ: \(x\ne1\)
\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)
\(\Leftrightarrow4x-3>0\)
\(\Rightarrow x>\frac{3}{4}\)
\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)
Chẳng đáp án nào đúng cả :)
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
\(\left\{{}\begin{matrix}3x+1\ge2x+7\\4x+3>2x+19\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge6\\2x>16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge6\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)
Ko có đáp án nào giống hoàn toàn, đáp án C là tập con của \(\left(8;+\infty\right)\) nên chấp nhận cũng được
y xác định khi :
X3 - 1 \(\ne\)0
=> X \(\ne\)1.
Vậy TXD : D =R\ {1} hay D = (-\(\infty\);1) \(\cup\)( 1 ; + \(\infty\))
\(2\left(x-3\right)\left(x+3\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
Đáp án D đúng