Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đẳng thức đề bài ta suy ra (7x + 2).(5x + 1) = (7x + 1).(5x + 7)
=> 7x.(5x + 1) + 2.(5x + 1) = 7x.(5x + 7) + 1.(5x + 7)
=> 35x2 + 7x + 10x + 2 = 35x2 + 49x + 5x + 7
=> 17x + 2 = 54x + 7
=> 54x - 17x = 7 - 2
=> 37x = 5
=> x = \(\frac{5}{37}\)
Theo t/c dãy tỉ số=nhau;
\(\frac{7x+2}{5x+7}=\frac{7x+1}{5x+1}=\frac{7x+2-\left(7x+1\right)}{5x+7-\left(5x+1\right)}=\frac{7x+2-7x-1}{5x+7-5x-1}=\frac{1}{6}\)
=>\(\frac{7x+2}{5x+7}=\frac{1}{6}\)
=>(7x+2).6=5x+7
=>42x+12=5x+7
=>42x+12-(5x+7)=0
=>42x+12-5x-7=0=>37x-5=0=>x=5/37
Vậy...
Để \(A=\frac{3}{x+2}\) đạt được giá trị nguyên
=> 3 chia hết x+2
=> \(x+2\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> Ta lập được bảng sau:
x+2 | 1 | -1 | 3 | -3 |
x | -1 | -3 | 1 | -5 |
Vậy để \(A=\frac{3}{x+2}\) thì x = {-1;-3;1;-5}
CHÚC BẠN HỌC TỐT
Ta coˊ :xy+x+1x+yz+y+1y+xz+z+1z
=���+�+1+�����+��+�+����2��+���+��=xy+x+1x+xyz+xy+xxy+x2yz+xyz+xyxyz
=���+�+1+����+�+1+1��+�+1(Vıˋ ���=1)=xy+x+1x+xy+x+1xy+xy+x+11(Vıˋ xyz=1)
=�+��+1��+�+1=xy+x+1x+xy+1
=1=1
Ta có: \(\frac{1}{x}-\frac{y}{8}=\frac{1}{16}\)
=> \(\frac{1}{x}=\frac{1}{16}+\frac{y}{8}\)
=> \(\frac{1}{x}=\frac{1+2y}{16}\)
=> 1.16 = x(1 + 2y)
=> x(1 + 2y) = 16 = 1 . 16 = 2 . 8 = 4.4
Vì 1 + 2y là số lẽ nên 1 + 2y \(\in\){1; -1} => x \(\in\){16; -16}
Lập bảng :
1 + 2y | 1 | -1 |
x | 16 | -16 |
y | 0 | -1 |
Vậy ...
x^2=36
x^2=6^2
x=-6:6
->Vậy: -6;6