Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left\{x\in R|1:\left|x-3\right|>3\right\}\)
Giải \(1:\left|x-3\right|>3\Leftrightarrow\left|x-3\right|>\dfrac{1}{3}\)
\(TH_1:x\ge3\\ x-3>\dfrac{1}{3}\Leftrightarrow x>\dfrac{10}{3}\left(tm\right)\)
\(TH_2:x< 3\\ x-3>-\dfrac{1}{3}\Leftrightarrow x>\dfrac{8}{3}\left(tm\right)\)
Vậy \(A=\left\{x\in R|x>\dfrac{10}{3}\right\}\) \(\Rightarrow A=\left(-\infty;\dfrac{10}{3}\right)\) (1)
\(B=\left\{x\in R|\left|x-2\right|< 2\right\}\)
Giải \(\left|x-2\right|< 2\)
\(TH_1:x\ge2\\ x-2< 2\Leftrightarrow x< 4\left(tm\right)\Rightarrow2\le x< 4\)
\(TH_2:x< 2\\ x-2< -2\Leftrightarrow x< 0\left(tm\right)\Rightarrow x< 0\)
Vậy \(B=[2;4)\) (2)
Từ (1),(2) \(\Rightarrow X=A\cap B=[2;\dfrac{10}{3})\)
Do cả 2 tập A và B đều có \(x\in R\) nên số phần từ của tập X nằm trong khoảng từ 2 đến 10/3.
Bài 1
a, A = {- 1; - 6; 4}
b, B = {-3 ; \(\pm1\); 3; 5; 7; 9}
Bài 2
a, (- 7; 0] \(\cap\) [- 4; 9) = [-4 ; 0]
b, [- 2; 2] \ [1; +∞) = [- 2 ; 1)
c, (- ∞; 5) \(\cup\) [-2 ; 5] = (- ∞; 5]
d, A = [-3 ; 1] và B = (-1; +∞)
Vậy A \(\cap\) B = ( - 1; 1]
Để \(\dfrac{3}{\left|x\right|}>1\) thì \(\dfrac{3}{\left|x\right|}-1>0\)
=>\(\dfrac{3-\left|x\right|}{\left|x\right|}>0\)
=>\(3-\left|x\right|>0\)
=>\(\left|x\right|< 3\)
mà x nguyên và x<>0
nên \(x\in\left\{1;-1;2;-2\right\}\)
=>\(2x^2-1\in\left\{1;1;7;7\right\}\)
=>A={1;7}
\(1< =x^2< =81\)
mà \(x\in\)N*
nên \(x^2\in\left\{1;4;9;16;25;36;49;64;81\right\}\)
=>\(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)
=>B={1;2;3;4;5;6;7;8;9}
A={1;7}; B={1;2;3;4;5;6;7;8;9}
\(C_AB=A\text{B}=\varnothing\)
=>\(X=\varnothing\)
=>Tập X không có phần tử nào là số nguyên tố
\(\left(x-1\right)\left(x+2\right)\left(x^3+4x\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)x\left(x^2+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-2\\x^2=-4\left(vô.lí\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)
Vậy A có 3 phần tử (B)