K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2020

Từ giả thiết ta có: \(\hept{\begin{cases}AB=AC=a\\BC=a\sqrt{2}\end{cases}}\)

\(\Rightarrow p=\frac{AB+BC+AC}{2}=a\left(\frac{2+\sqrt{2}}{2}\right)\)

\(\Rightarrow r=\frac{S}{p}=\frac{2}{2+\sqrt{2}}\)

5 tháng 2 2022

Tham khảo:

Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)

Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)

Xét tỉ số:

\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)

5 tháng 2 2022

này giống trên mạng r 

Xét ΔABC vuông tại A có

\(cosB=\dfrac{AB}{BC}\)

=>\(\dfrac{4}{BC}=sin60=\dfrac{1}{2}\)

=>BC=8(cm)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+4^2=8^2=64\)

=>\(AC^2=48\)

=>\(AC=4\sqrt{3}\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot4\sqrt{3}=8\sqrt{3}\)

Nửa chu vi tam giác ABC là:

\(4+4\sqrt{3}+8=12+4\sqrt{3}\)

Bán kính đường tròn nội tiếp ΔABC là:

\(\dfrac{8\sqrt{3}}{12+4\sqrt{3}}=\dfrac{2\sqrt{3}}{\sqrt{3}+3}=\sqrt{3}-1\)

1 tháng 8 2019

Ta có công thức tính diện tích tam giác khi biết các cạnh của tam giác và bán kính đường tròn ngoại tiếp là: 

\(S=\frac{abc}{4R}\); với R là bán kính đường tròn ngoại tiếp và; a, b, c lần lượt là các cạnh của tam giác.

Bài giải:

A B C H

Ta có tam giác AB=AC =10 cm

Kẻ đường cao BH

=> BH= CH= 12:2 =6cm

Áp dụng định lí Pitago 

=> AH^2 =AC^2-HC^2=10^2-6^2=64

=> AH = 8 cm

=> Diện tích tam giác ABC: S= AH.BC:2=48 (cm^2)

Mặt khác \(S=\frac{AB.AC.BC}{4R}\Rightarrow R=\frac{AB.AC.BC}{4S}=\frac{10.10.12}{4.48}=6,25\left(cm\right)\)

Vậy bán kính đường tròn ngoại tiếp bằng 6,25 cm.

9 tháng 8 2021

A B C I D F J

Bổ đề: Tam giác ABC cân tại A. Điểm D nằm trên trung trực của BC khi và chỉ khi \(\widehat{ADB}=\widehat{ADC}\).

Giải: Vì \(CD=CA\), điểm I nằm trên phân giác \(\widehat{ACD}\) nên \(ID=IA\)

Ta thấy (J) tiếp xúc với CA tại A, suy ra \(\widehat{AFI}=\widehat{IAC}=\widehat{IAF}\) hay \(IA=IF\)

Từ đó \(\Delta DIF\) cân tại I. Chú ý rằng \(\widehat{IBF}=\widehat{IBD}\), suy ra \(BF=BD\) theo bổ đề.

21 tháng 2 2016

A B C A' B' C' I D

\(\overrightarrow{ID}.\overrightarrow{AA'}=\overrightarrow{ID}\left(\overrightarrow{IA'}-\overrightarrow{IA}\right)=\overrightarrow{ID}.\overrightarrow{IA'}-\overrightarrow{ID}.\overrightarrow{IA}=IA'^2-\overrightarrow{ID}.\overrightarrow{IA}\)

              \(=IA'^2-\left(\overrightarrow{IC'}+\overrightarrow{C'D}\right)\overrightarrow{IA}=IA'^2-\overrightarrow{IC'}.\overrightarrow{IA'}-\overrightarrow{C'D}.\overrightarrow{IA}=IA'^2-IC'^2-0\) (vì AI vuông góc với C'B')

             \(=r^2-r^2=0\) (r là bán kính đường tròn nội tiếp tam giác ABC)

ĐFCM