Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Đặt tên cho cách cạnh là: M,N,P
Ta có:
MN=7dm
MP=8dm
PN=9dm
=>MN2=72=49dm
=>MP2=82=64dm
=>PN2=92=81dm
Mà: 49+64 ≠81
=>MNP không phải là tam giác vuông
b, Đặt tên cho các cạnh là: A,B,C
Ta có:
AB=6cm
AC=8cm
BC=10cm
=>AB2=62=36cm
=>AC2=82=64cm
=>BC2=102=100cm
Mà: 36+64=100
Nên: ABC là tam giác vuông
Tam giác ở Phần b) là tam giác vuông
vì một tam giác vuông có tổng bình phương hai cạch góc vuông bằng bình phương cạnh huyền ( Định lý pytago)
ta có : \(6^2+8^2=100\) Hay \(10^2\)
Vậy ...
Câu 2. Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau :
A. 3cm; 5cm; 7cm
B. 4cm; 6cm; 8cm
C. 5cm; 7cm; 8cm
D. 3cm; 4cm; 5cm
\(3^2+4^2=5^2\)
Cái này còn được gọi là tam giác Ai Cập nữa nhé :))
Bạn tự vẽ hình.
a, Sử dụng định lí pitago tính được \(BC=5cm\)
b, Dễ dàng chứng minh \(\Delta ABK=\Delta IBK\left(c.g.c\right)\)
=> \(\widehat{BIK}=\widehat{BAK}=90^o\)
=> \(KI\perp BC\)
c, Ta có: \(\hept{\begin{cases}AH\perp BC\\KI\perp BC\end{cases}}\)
=> AH // KI
=> \(\widehat{HAI}=\widehat{KIA}\) (1)
Mà AK = KI (do \(\Delta ABK=\Delta IBK\))
=> \(\Delta AKI\) cân tại K
=> \(\widehat{KAI}=\widehat{KIA}\) (2)
Từ (1) và (2) => \(\widehat{HAI}=\widehat{KAI}\)
=> AI là tia phân giác \(\widehat{HAC}\)
d, \(\Delta AEK\) có AI là phân giác => \(\Delta AEK\) cân tại A
Bạn chỉ cần áp dụng định lý py-ta-go đảo là ra!
A: \(3cm,5cm,7cm\)
Ta có: \(7^2=49\)
\(3^2+5^2=9+25=34\)
Vì \(49>34\)
=> Tam giác này không phải là tam giác vuông
B: \(4cm,6cm,8cm\)
Ta có: \(8^2=64\)
\(4^2+6^2=16+36=52\)
Vì \(64>52\)
=> Tam giác này không phải là tam giác vuông
C: \(5cm,7cm,8cm\)
Ta có: \(8^2=64\)
\(5^2+7^2=25+49=74\)
Vì \(64< 74\)
=> Tam giác này không phải là tam giác vuông
D: \(3cm,4cm,5cm\)
Ta có: \(5^2=25\)
\(3^2+4^2=9+16=25\)
Vì \(25=25\)
=> Tam giác này là tam giác vuông ( theo định lý py-ta-go đảo )
Nhưng cái nào không phải là tam giác vuông thì không cần ghi theo định lý py-ta-go ở cuối nha!
Chọn B