K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

a,ta có;\(\widehat{E}=\widehat{F}\)(do \(DE=DF\)nên\(\Delta DEF\)cân tại D)mà\(\widehat{E}=50^0=>\widehat{F}=50^0\)

b.xét\(\Delta DEF\)cân tại D có(1)

DH là đường trung tuyến ứng với cạnh EF(do H là trung điểm của EF)(2)

từ (1) và(2)=>DH đồng thời là đường cao ứng với cạnh EF=>\(DH\perp EF\)tại H

c.xét\(\Delta DMH\)\(\Delta DNH\)

DM=DN(GT)

HM=HN(GT)

DM:chung

=>\(\Delta DMH=\Delta DNH\left(c-c-c\right)\)

=>\(\widehat{DMH}=\widehat{DNH}\)(hai góc tương ứng)

29 tháng 6 2018

bạn ơi câu a đề bài cho r nhé

phần b: tam giác DEF cân ở D và DH là phân giác suy ra DH đồng thời là đường cao nên DH vuông góc EF 

còn phần c bạn chép lại đề cho mình nhé

29 tháng 6 2018

Trên DE lấy điểm M, trên DF lấy điểm N sao cho DM = DN, vaf HM =HN. Chứng minh \(\widehat{DHN}=\widehat{DHN}\)

8 tháng 3 2019

D F E H M K I

a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)

Suy ra  \(\Delta MDE\) cân tại M.

\(\Rightarrow\widehat{E}=\widehat{EDM}\)

Ta có:\(\widehat{F}=90^0-\widehat{E}\)

\(\widehat{HDE}=90^0-\widehat{E}\)

\(\Rightarrow\widehat{F}=\widehat{HDE}\)

Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)

\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)

b) Trên EF lấy điểm K sao cho EK=ED

    Trên DF lấy điểm I sao cho DI=DH

Khi đó:\(EF-DE=EF-EK=KF\)

\(DF-DH=DF-DI=IF\)

Ta cần chứng minh \(KF>IF\),thật vậy!

Ta có:\(EK=ED\)

\(\Rightarrow\Delta EDK\) cân tại E

\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)

Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)

\(\widehat{EKD}+\widehat{HDK}=90^0\)

Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)

\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)

Xét \(\Delta DHK\&\Delta DIK\) có:

\(DH=DI\)(theo cách chọn điểm phụ)

\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)

\(DK\) là cạnh chung

\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)

\(\Rightarrow\widehat{KID}=90^0\)

\(\Rightarrow\Delta FIK\) vuông tại I

\(\Rightarrow FK>FI^{đpcm}\)

29 tháng 1 2020

zZz Phan Gia Huy zZz trả lời đúng rồi

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

16 tháng 12 2018

Cái này mk áp dụng lp 8 nha !

Xét tam giác ABC có : AB=DB(GIẢ THIẾT)

                                    AE=EC(GIẢ THIẾT)

               =) DE là đường trung bình của tam giác ABC 

              =) DE = 1/2 BC

Đến chỗ này mk sửa cho bn phần b nha ! phải là cm tam giác DBF = 1/2 tam giác ABC nha ( mk nghĩ vậy )

=) BF=1/2BC =) FC = ED ( cùng bằng 1/2 BC ) 

Xét tam giác ABC có :

            FC = ED(CMT)

           BF = FC (Vì FC =1/2 AB nên  F là trung điểm của BC )

Nên ta có DF là đường trung bình tam giác ABC =) DF song song vs AC .

Chúc bn học tốt nha !