Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chú ý viết cách phần cho và phần yêu cầu.
a/ Xét t/g ABI và t/g ADI có
AI : chung
\(\widehat{BAI}=\widehat{CAI}\) (AI là pg góc BAC)
AB = AD (GT)
=> t/g ABI = t/g ADI (c.g.c)
=> BI = DI (2 cạnh t/ứ)
b/ Có t/g ABI = t/g ADI
=> \(\widehat{ABI}=\widehat{ADI}\)(2 góc t/ứ)
=> \(180^o-\widehat{ABI}=180^o-\widehat{ADI}\)
=> \(\widehat{IBK}=\widehat{IDC}\) Xét t/g BIK và t/g DIC có
\(\widehat{IBK}=\widehat{IDC}\)
IB = DI (cmt)
\(\widehat{BIK}=\widehat{DIC}\)(đối đỉnh)
=> t/g BIK = t/g DIC (g.c.g)
c/ Có t/g BIK = t/g DIC
=> BK = DC (2 cạnh t/ứ) => AB + BK = DC + AD
=> AK = AC
=> t/g AKC cân tại A
Mà AI là pg góc BAC (K thuộc AB)
=> AI đồng thời là đường cao t/g AKC
=> AI ⊥ KC Mà BH ⊥ KC
=> AI // BH
bạn tự vẽ hình nhá
Vì AI là tia phân giác ⇔ \(\widehat{BAI}=\widehat{DAI}=\dfrac{\widehat{BAC}}{2}\)
a) xét Δ ABI và ΔADI, có:
AB=AD
\(\widehat{BAI}=\widehat{DAI}\) (cmt)
AI chung
⇒Δ ABI =Δ ADI (c.g.c)
⇒BI=DI (2 cạnh t/ứng) (đpcm)
b) Do Δ ABI =Δ ADI (cmt) ⇒ \(\widehat{ABI}=\widehat{ADI}\)
Có: \(\widehat{ABI}+\widehat{IBK}\) =1800 (2 góc kề bù)
\(\widehat{ADI}+\widehat{IDC}\) =1800 (2 góc kề bù)
Mà \(\widehat{ABI}=\widehat{ADI}\) (cmt) ⇒ \(\widehat{IBK}=\widehat{IDC}\)
Vì \(\widehat{BIK}\) và \(\widehat{DIC}\) là 2 góc đối đỉnh ⇒ \(\widehat{BIK}\) =\(\widehat{DIC}\)
xét Δ BKI và Δ DCI có:
\(\widehat{IBK}=\widehat{IDC}\) (cmt)
BI=ID (cmt)
\(\widehat{BIK}\) =\(\widehat{DIC}\) (cmt)
⇒Δ BKI = Δ DCI (g.c.g) (đpcm)
c) Từ Δ BKI = Δ DCI (cmt) ⇒ BK=DC
Có AB=AD (gt) ; BK=DC (cmt)
⇔AB+BK=AD+DC
⇔AK=AC
⇒Δ ACK cân tại A.
Mà AI là phân giác của \(\widehat{KAC}\) (gt)
⇒AI vừa là đường phân giác vừa là đường cao của Δ ACK.
⇒AI ⊥ CK. mà BH ⊥ CK (gt)
⇒AI // BH (đpcm)
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Xét tam giác AEC= tam giác ADB(g-c-g)
suy ra AE=AD từ đó BE=DC
a: Xét ΔAIK vuông tại A và ΔDIC vuông tại D có
IA=ID
\(\widehat{AIK}=\widehat{DIC}\)
Do đó: ΔAIK=ΔDIC
Suy ra: IK=IC
hay ΔIKC cân tại I
b: Xét ΔBKC có BA/AK=BD/DC
nên AD//KC
c: Ta có: BK=BC
nên B nằm trên đường trung trực của KC(1)
ta có: IK=IC
nên I nằm trên đường trung trực của KC(2)
Ta có: MK=MC
nên M nằm trên đường trung trực của KC(3)
Từ (1), (2)và (3) suy ra B,I,M thẳng hàng