Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=5^2-3^2=16\)
hay AB=4(cm)
Vậy: AB=4cm
b) Xét ΔCDE và ΔCAB có
\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\left(\dfrac{1.5}{3}=\dfrac{2.5}{5}\right)\)
\(\widehat{ECD}=\widehat{ACB}\)(hai góc đối đỉnh)
Do đó: ΔCDE\(\sim\)ΔCAB(c-g-c)
Suy ra: \(\widehat{CDE}=\widehat{CAB}\)(hai góc tương ứng)
mà \(\widehat{CAB}=90^0\)(gt)
nên \(\widehat{CDE}=90^0\)
hay ED\(\perp\)BC
Ta có: ΔCDE\(\sim\)ΔCAB(cmt)
nên \(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{DE}{4}=\dfrac{1}{2}\)
hay DE=2(cm)
Vậy: DE=2cm
a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)
Xét \(\Delta\)AHD và \(\Delta\)FHA có:
\(\widehat{AHD}=\widehat{FHA}=90^o\)
\(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)
\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)
\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)
mà \(\widehat{ADH}+\widehat{HAD}=90^o\)
nên \(\widehat{FAH}+\widehat{HAD}=90^o\)
hay \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A
GIẢI:
a) Xét Δ ABC và Δ AED, ta có :
(đối đỉnh)
AB = AD (gt)
AC = AD (gt)
=> Δ ABC = Δ AED (hai cạnh góc vuông)
=> BC = DE
Xét Δ ABD, ta có :
(Δ ABC vuông tại A)
=> AD AE
=>
=> Δ ABD vuông tại A.
mà : AB = AD (gt)
=> Δ ABD vuông cân tại A.
=>
cmtt :
=>
mà : ở vị trí so le trong
=> BD // CE
b) Xét Δ MNC, ta có :
NK MC = > NK là đường cao thứ 1.
MH NC = > MH là đường cao thứ 2.
NK cắt MH tại A.
=> A là trực tâm. = > CA là đường cao thứ 3.
=> MN AC tại I.
mà : AB AC
=> MN // AB.
c) Xét Δ AMC, ta có :
(đối đỉnh)
(Δ ABC = Δ AED)
=> (cùng phụ góc ABC)
=> Δ AMC cân tại M
=> AM = ME (1)
Xét Δ AMI và Δ DMI, ta có :
(MN AC tại I)
IM cạnh chung.
mặt khác : (so le trong)
(đồng vị)
mà : (cmt)
=>
=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)
=> MA = MD (2)
từ (1) và (2), suy ta : MA = ME = MD
ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)
=>MA = DE/2.
bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google
A B C H D E F
Ta có: AD=HE => AD+DH=HE+DH => AH=DE => AH2=DE2; AD=HE => AD2=HE2.
AH vuông góc BC => Tam giác BHE vuông tại H => BE2=BH2+HE2 (Định lí Pytago) (1)
AH vuông góc BC, DF//BC => DF vuông góc với AH => Tam giác EDF vuông tại D => EF2=DE2+DF2 (Pytago) (2)
Từ (1) và (2) => BE2+EF2=BH2+HE2+DE2+DF2 (3)
Thay AH2=DE2; AD2=HE2 (cmt) vào (3), ta được: BE2+EF2=BH2+AD2+AH2+DF2 => BE2+EF2=(BH2+AH2)+(AD2+DF2)
=> BE2+EF2=AB2+AF2 (Áp dụng định lí Pytago với 2 cặp cạnh)
Xét tam giác ABF có: ^A=900 => AB2+AF2=BF2, thay vào biểu thức trên ta có: BE2+EF2=BF2.
=> Tam giác BEF có: BE2+EF2=BF2 => Tam giác BEF vuông tại E (Định lí Pytago đảo) (đpcm).
a) Vì \(\frac{CD}{AC}=\frac{1,5}{3}=\frac{1}{2}\); \(\frac{CE}{BC}=\frac{2,5}{5}=\frac{1}{2}\)
Nên \(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)
Xét ΔCDE và ΔCAB có
\(\frac{CD}{AC}=\frac{CE}{BC}=\frac{1}{2}\)
Góc DCE=ACB(đối đỉnh)
Vậy hai tam giác đồng dạng với nhau
=> Góc CDE=CAB=90 độ
Vậy ΔCDE là tam giác vuông.
Áp dụng định lí Pi-ta-go vào ΔCDE ta có:
\(CE^2=DC^2+DE^2\Rightarrow DE^2=CE^2-CD^2=2,5^2-1,5^2=4\)
=> \(DE=\sqrt{4}=2cm\).
b) Vì ΔCDE đồng dạng với ΔCAB nên
\(\frac{CD}{AC}=\frac{DE}{AB}\Rightarrow AB=\frac{AC.DE}{CD}=\frac{3.2}{1,5}=4\left(cm\right)\)
ΔABC vuông tại A, đường cao AH, theo hệ thức lượng, ta có:
\(CH=BC-CH=5-1,8=3,2\left(cm\right)\)