K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

Tam giác ABC vuông ở A, ta có:

       AH= 25.64 = 1600, suy ra AH = 40 (cm).

\(tgB=\frac{AH}{BH}=\frac{40}{25}=1,6\)

=>     \(\widehat{B}\approx58^0\);  \(\widehat{C}=32^0\).

hình đây nha 

A B C

Ta có : AH^2 = CH . HB
=>AH=40
Ta lại có:tan B = AH / HB=40/25=1.6
=>B = 580
=>C = 320

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=40cm\\AC=8\sqrt{89}cm\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(\sin\widehat{C}=\dfrac{AH}{AC}=\dfrac{5}{\sqrt{89}}\)

\(\Leftrightarrow\widehat{C}\simeq32^0\)

hay \(\widehat{B}=58^0\)

11 tháng 6 2017

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

A H 2 = H B . H C

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=HB\cdot HC\)

hay AH=40(cm)

Xét ΔABH vuông tại H có 

\(\tan\widehat{B}=\dfrac{AH}{HB}=\dfrac{40}{25}=\dfrac{8}{5}\)

\(\Leftrightarrow\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)

12 tháng 10 2017

Đáp án C

Ta có: BC = HB + HC = 25 + 64 = 89 cm

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:

a: BC=25+64=89cm

AH=căn 25*64=40cm

S ABC=1/2*40*89=1780cm2

AB=căn 25*89=5căn 89cm

AC=căn 64*89=8 căn 89

=>C=13căn 89+89(cm)

b: tan B=AC/AB=8/5

=>góc B=58 độ

=>góc C=32 độ

c:

góc AMH=góc ANH=góc MAN=90 độ nên AMHN là hcn

=>MN=AH=40cm

11 tháng 10 2017

Ta có: BC = BH + CH = 9 + 16 = 25

Áp dụng hệ thức lượng cho ABC vuông tại A có đường cao AH ta có:

Xét ABC vuông tại A ta có:

Đáp án cần chọn là: A

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)