Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BM là trung tuyến của tam giác ABC, G thuộc BM, BG=2/3BM => G la trọng tâm của tam giác ABC
=> GM=1/2BG
G là trung điểm của BK => GK=BG => GM+MK=BG. GM=1/2BG => 1/2BG+MK=BG => MK=1/2BG
=> GM=MK=1/2BM
Xét tam giác GKC: M trung điểm của GK, N là trung điểm của KC
=> CM và GN là trung tuyến của tam giác GKC. Mà CM, GN cắt nhau tại O
=> O là trọng tâm của tam giác GKC (đpcm)
b) GN là trung tuyển, O là trọng tâm => GO=2/3GN (1)
Xét tam giác BKC: G là trung điểm BK, N là trung điểm KC => GN=1/2BC (T/c đường trung bình) (2)
(1);(2) => GO=\(\dfrac{2}{3}.\dfrac{1}{2}=\dfrac{1}{3}\) BC (đpcm)
A B C G M K N O
a) BM là trung tuyến của tam giác ABC, G thuộc BM, BG=2/3BM => G la trọng tâm của tam giác ABC
=> GM=1/2BG
G là trung điểm của BK => GK=BG => GM+MK=BG. GM=1/2BG => 1/2BG+MK=BG => MK=1/2BG
=> GM=MK=1/2BM
Xét tam giác GKC: M trung điểm của GK, N là trung điểm của KC
=> CM và GN là trung tuyến của tam giác GKC. Mà CM, GN cắt nhau tại O
=> O là trọng tâm của tam giác GKC (đpcm)
b) GN là trung tuyển, O là trọng tâm => GO=2/3GN (1)
Xét tam giác BKC: G là trung điểm BK, N là trung điểm KC => GN=1/2BC (T/c đường trung bình) (2)
(1);(2) => GO=\(\frac{2}{3}.\frac{1}{2}=\frac{1}{3}\)BC (đpcm)
vẽ hình thì theo bn kia nha m.n
a) BM là trung tuyến của tam giác ABC, G thuộc BM, BG=2/3BM => G la trọng tâm của tam giác ABC
=> GM=1/2BG
G là trung điểm của BK => GK=BG => GM+MK=BG. GM=1/2BG => 1/2BG+MK=BG => MK=1/2BG
=> GM=MK=1/2BM
Xét tam giác GKC: M trung điểm của GK, N là trung điểm của KC
=> CM và GN là trung tuyến của tam giác GKC. Mà CM, GN cắt nhau tại O
=> O là trọng tâm của tam giác GKC (đpcm)
b) GN là trung tuyển, O là trọng tâm => GO=2/3GN (1)
Xét tam giác BKC: G là trung điểm BK, N là trung điểm KC => GN=1/2BC (T/c đường trung bình) (2)
(1);(2) => GO=
3
2 .
2
1 =
3
1 BC (đpcm)
:3
) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD
Xét Δ BCD có M là trung điểm BC, O là trung điểm CD OM là đường trung bình của Δ BCD
OM=12DB và OM // DB
mà OM⊥BC ( OM là đường trung trực của BC ) DB⊥BC
mà AH⊥BC( AH là đường cao của ΔABC ) AH // DB
Xét ΔABH và ΔBAD có
HABˆ=DBAˆ( 2 góc so le trong do AH // DB )
AB chung
ABHˆ=BADˆ( 2 góc so le trong do AH // DB )
ΔABH=ΔBAD( g-c-g )
AH = BD mà OM=12DB OM=12AH
AH = 2 OM ( đpcm )
b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A
Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A PQ là đường trung bình của \large\Delta AG'H
PQ=12AH và PQ // AH
Do PQ=12AH mà OM=12AH PQ = OM
Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM
Xét ΔPQG′ và ΔOMG′ có
PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)
PQ = OM (c/m trên )
QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )
ΔPQG′=ΔOMG′( g-c-g )
G'Q = G'M và G'P = G'O
Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A ) G′M=12G′Amà G'M + G'A = AM
G′A=23AM mà AM là trung tuyến của ΔABC
G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G
mà G′∈OH G∈OH O, H, G thẳng hàng ( đpcm )
Hên xui nghe bạn ^ ^