Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ chứng minh từ các hình bình hành to nhỏ khác nhau. Từ đó CM O là trung điểm AA(1).
Vậy \(A,O,A_1\)thẳng hàng
Gọi G' là giao của IJ và AA1
Xét \(\Delta\)ABC có B1;C1 lần lượt là trung điểm của cạnh AC và AB
=> B1C1 =\(\frac{BC}{2}\). Tương tự: A1B1=\(\frac{AB}{2}\); C1A1=\(\frac{CA}{2}\)
Xét \(\Delta\)A1B1C1 và \(\Delta\)ABC có: \(\frac{A_1B_1}{AB}=\frac{B_1C_1}{BC}=\frac{C_1A_1}{CA}\left(=\frac{1}{2}\right)\)
Do đó tam giác A1B1C1 đồng dạng với tam giác ABC (c.c.c)
=> \(\widehat{B_1A_1C_1}=\widehat{BAC};\widehat{A_1B_1C}=\widehat{ABC}\)
mà \(\widehat{JA_1B_1}=\frac{\widehat{B_1A_1C_1}}{2},\widehat{IAB}=\frac{\widehat{BAC}}{2}\)
Do đó: \(\Delta JA_1B_1\) đồng dạng với tam giác IAB (g.g)
=> \(\frac{JA_1}{IA}=\frac{A_1B_1}{AB}=\frac{1}{2}\)
Mà \(\widehat{BAA_1}=\widehat{AA_1B_1}\left(slt;AB//A_1B_1\right)\). Nên \(\widehat{IAA_1}=\widehat{IA_1A}\Rightarrow AI//A_1J\)
Xét tam giác G'AI có: A1J // AI => \(\frac{G'A_1}{G'A}=\frac{G'J}{G'I}=\frac{JA_1}{IA}=\frac{1}{2}\) (hệ quả của định lý Talet)
=> \(AG'=\frac{2}{3}AA_1\)
Tam giác ABC có AA1 là đường trung tuyến, G' thuộc đoạn thẳng AA1 và AG' \(=\frac{2}{3}AA_1\)
Do đó G' là trọng tâm tam giác ABC, G' thuộc đoạn thẳng AA1 và AG'=\(\frac{2}{3}AA_1\)
Bổ đề: Nếu tam giác ABC có tâm đường tròn ngoại tiếp O và trực tâm H thì \(\vec{OH}=\vec{OA}+\vec{OB}+\vec{OC}\).
Chứng minh: Xét hiệu \(\vec{s}=\vec{OA}+\vec{OB}+\vec{OC}-\vec{OH}=\left(\vec{OA}+\vec{OB}\right)+\vec{HA}\), có phương vuông góc với BC, tương tư vector s có phương vuông góc với CA. vậy vector s vuông góc với hai phương khác nhau nên là vector không.
Bằng cách tính góc, ta có \(IA_1\perp B_1C_1,IB_1\perp A_1C_1\to\) I chính là trực tâm tam giác A1B1C1. Từ đó áp dụng bổ đề 1, cho ta ngay a)
b) Ta có \(\vec{OA_1}=\frac{R}{r}\vec{IA_2},\vec{OB_1}=\frac{R}{r}\vec{IB_2},\vec{OC_1}=\frac{R}{r}\vec{IC_2}\to\vec{OA_1}+\vec{OB_1}+\vec{OC_1}\)
\(=\frac{R}{r}\left(\vec{IA_2}+\vec{IB_2}+\vec{IC_2}\right)=3\frac{R}{r}\vec{IG'}\) trong đó G' là trọng tâm tam giác A2B2C2. Theo câu a, ta suy ra véc tơ OI bằng 3R/r lần véc tơ IG', do đó điểm O nằm trên đường thẳng IG'. Vì I là tâm đường tròn ngoại tiếp tam giác A2B2C2 và G' là trọng tâm nên IG' chính là đường thẳng Ơ-le của tam giác A2B2C2. Suy ra OI chính là đường thẳng Ơ le của tam giác A2B2C2
Đề bài bị thừa hai điểm M,N nhé bạn.
Gọi X,Y tương ứng là tiếp điểm của hai đường tròn \(\left(O_1\right),\left(O_2\right)\) với \(BC\). Ta có \(\Delta O_1XH\sim\Delta O_2YH\) (cùng là tam giác vuông cân). Suy ra \(\frac{O_1H}{O_2H}=\frac{r_1}{r_2}\) với \(r_1,r_2\) tương ứng là bán kính đường tròn nội tiếp hai tam giác \(\Delta AHB,\Delta CHA.\) Mà \(\Delta AHB\sim\Delta CHA\) nên \(\frac{r_1}{r_2}=\frac{AB}{CA}\to\frac{O_1H}{O_2H}=\frac{AB}{CA}\to\Delta O_1HO_2\sim\Delta BAC\) (c.g.c). Suy ra \(\angle ABC+\angle HO_2O_1=90^{\circ}.\)
Đến đây ta có \(\angle CO_2O_1+\angle O_1BC=\angle HO_2C+\angle HO_2O_1+\angle O_1BC\)
\(=180^{\circ}-\frac{\angle AHC+\angle ACH}{2}+\angle HO_2O_1+\angle O_1BC=180^{\circ}-\frac{180^{\circ}-\angle HAC}{2}+\angle HO_2O_1+\angle O_1BC\)
\(=90^{\circ}+\angle HO_2O_1+\angle ABC=180^{\circ}.\)
Vậy tứ giác \(BCO_1O_2\) nội tiếp.
Dễ c/m đc: \(\Delta AHB~\Delta DOE\)
=> \(\frac{AB}{DE}=\frac{AH}{OD}=\frac{GH}{OE}=\frac{1}{2}\)
Gọi K là trung điểm AH
Dễ c.m: AODK là hình bình hành
=> DK = OA = R
Xét tam giác ODA1: \(OA_1^2=OD^2+DA_1^2=OD^2+DH^2=\frac{1}{2}\left(OH^2+DK^2\right)=\frac{1}{2}\left(OH^2+R^2\right)\)
MỌI NGƯỜI GIÚP MK Ý CHỨNG MINH DƯỚI ĐÂY:
Chứng minh: \(OB_1^2=OB_2^2=\frac{1}{2}\left(OH^2+R^2\right);\)\(OC_1^2+OC_2^2=\frac{1}{2}\left(OH^2+R^2\right)\)