Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- vẽ MH và MK lần lượt vuông góc với AB và AC
- Xét \(\Delta AHM\)vuông tại H và\(\Delta AKM\)vuông tại K có: AM: cạnh chung
\(\widehat{HAM}=\widehat{KAM}\)(vì AM là tia phân giác của \(\widehat{A}\))
\(\Rightarrow\)\(\Delta AHM=\Delta AKM\)(cạnh huyền - góc nhọn)
\(\Rightarrow\)MH = MK (2 cạnh tương ứng)
- Xét \(\Delta BHM\)vuông tại H và\(\Delta CKM\)vuông tại K có: BM = CM ( M là trung diểm của BC)
HM = KM (cmt)
\(\Rightarrow\)\(\Delta BHM=\Delta CKM\)(cạnh huyền - cạnh góc vuông)
\(\Rightarrow\)\(\widehat{B}=\widehat{C}\)(2 góc tương ứng)
Vậy \(\Delta ABC\)cân tại A ( vì có góc B và góc C là 2 góc ở đáy bằng nhau )
thì vừa là đường trung tuyến vừa là đường trung trực thì tam giác đó cân chứ sao trời!
Bài 3 :
A B C H K I
Gọi gia điểm của các đường trung trực với AB,Ac lần lượt là H ,K
Ta có :AH + HB = AB
AK + KC = AC
mà AB = AC ( tam giác ABC cân tại A)
=> AH + HB = AK + KC
mà CH và Bk lần lượt là trung trực của AB ,AC
=> AH = HB = AK = KC
Xét tam giác AHI và tam giác AKI có
AHI = AKI = 90
AH = AK ( cmt )
AI : cạnh chung
=> tam giác AHI = tam giác AKI ( canh huyền - cạnh gosc vuông )
=> ^HAI = ^KAI ( 2 góc tương ứng )
=> AI là tia phân giác của ^A
Vậy AI là tia phân giác của ^A
Bài 1
A B C D E H K
a, Vì tam giác ABC cân tại A => AB = AC và ^ABC = ^ACB
Ta có : ^ABC + ^ABD = 180 (kề bù )
^ACB + ^ ACE = 180 ( kề bù )
mà ^ABC = ^ACB
=> ^ABD = ^ ACE
Xét tam giác ABD và tam giác ACE có :
AB =AC ( tam giác ABc cân tại a )
^ABD = ^ACE ( cmt )
BD = CE ( gt)
=> tm giác ABD = tam giác ACE ( c.g.c)
=> ^ADB = ^AEC ( 2 góc tương ứng )
hay ^HDB = ^KEC
Xét tam giác HBD và tam gisc KEC có :
^DHB = ^EKC = 90
BD = CE (gt)
HDB = KEc ( cmt )
=> tam giác HBD = tam giác KCE ( cạnh huyền - góc nhọn )
=> HB = Ck ( 2 canh tương ứng )
Vậy HB = Ck
b,Xét tam giác ABH và tam giác ACk có
AHB = AKC = 90
HB = CK ( cmt )
AB = AC
=> tam giác ABH = tam giác ACK ( anh huyền - canh góc vuồng )
Vậy tam giác ABH =tam giác ACK
-Cách 2: -Kẻ MH vuông góc với AB; MK vuông góc với AC( H thuộc AB và K thuộc AC).
-Ta có: tam giác AHM= tam giác AKM( cạnh huyền-góc nhọn).
=> HM=MK. => tam giác BHM= tam giác CKM( cạnh huyền-cạnh góc vuông).
=> góc HBM= góc KCM. => tam giác ABC cân tại A.(đpcm)
Xét tam giác ABM VÀ ACM:
Góc MAB= MAC ( do AM là tia phân giác)
AM: cạnh chung'
BM=BC ( do M là trung điểm BC)
=> tam giác ABM= ACM ( c.g.c)
vậy: AB=AC ( hai cạnh tương ứng)
suy ra: Tam giác ABC là tam giác cân
Ta có: M là trung điểm BC (gt) => AM là đường trung tuyến
Xét tam giác ABC có AM là đường trung tuyến đồng thời là đường phân giác
=> Tam giác ABC cân tại A (vì trong 1 tam giác, 1 đường mang 2 tên thì là tam giác cân)