K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

trên hình kẻ đường cao AH

ta có \(\text{cos 50}=\frac{HC}{AC}\Rightarrow HC=AC.\text{cos 50 }=35.\text{cos 50}\approx22\text{ (cm)}\)

\(\text{sin 50}=\frac{AH}{AC}\Rightarrow AH=AC.\text{sin 50}=35.\text{sin 50}\approx27\left(cm\right)\)

\(\text{tan 60}=\frac{AH}{BH}\Rightarrow BH=\frac{AH}{\text{tan 60}}=\frac{27}{\text{tan 60}}\approx16\left(cm\right)\)

\(\Rightarrow BC=22+16=38\left(cm\right)\)

\(\text{sin 60}=\frac{AH}{AB}\Rightarrow AB=\frac{AH}{\text{sin 60}}=\frac{27}{\text{sin 60}}\approx31\left(cm\right)\)

Diện tích tam giác ABC là:

35+38+31=104 (cm)

16 tháng 8 2016

A B C H K

Từ A kẻ đường cao AH vuông góc với BC , từ B kẻ đường cao BK vuông góc với AC

=> AH = sinC x AC = sin 500 x 35 = a 

Ta có : AB = \(\frac{AH}{sinB}=\frac{a}{sinB}=b\) 

BK = \(sinA\times AB=sin\left(180^o-60^o-50^o\right)=sin70^o\times b\)= c

=> S . ABC = 1/2AC x BK = 1/2 x 35 x c =..........

a,b,c mình đặt thay cho độ dài AH , AB, BK

17 tháng 8 2016

Sao bạn không tính hẳn AH, AB, BK mà phải kí hiệu a, b,c vậy?

15 tháng 8 2016

Kẻ AH vuông góc với BC

Trong tam giác vuông AHC ta có:

\(cosC=\frac{HC}{AC}\Rightarrow HC=cosC.AC=cos50.35\approx22cm\)

\(\Rightarrow AH=\sqrt{AC^2-HC^2}=\sqrt{35^2-22^2}=\sqrt{741}cm\)

Trong tam giác vuông AHB ta có:

\(sinB=\frac{AH}{AB}\Rightarrow AB=\frac{AH}{sinB}=\frac{\sqrt{741}}{sin60}=2\sqrt{247}cm\)

\(\Rightarrow HB=\sqrt{AB^2-AH^2}=\sqrt{\left(2\sqrt{247}\right)^2-741}=\sqrt{247}cm\)

Vậy \(S_{ABC}=\frac{AH\left(HB+HC\right)}{2}=\frac{\sqrt{741}.\left(\sqrt{247}+22\right)}{2}\approx513cm\)

23 tháng 6 2021

Gút chóp bạn

 

15 tháng 8 2016

Giải:

Toán lớp 9
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=70
0, góc C=50nên góc A=600

Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400

Áp dụng HTCVGTTGV ABH,ta có :

BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 70=23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)

Toán lớp 9

Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.

Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1
 =300

Xét tam giác vuông AHC,ta có:
AH2 +HC2  =AC2
(12√3) +18=AC2

=>AC=6√21 (cm)

Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH

                                                       12√3=tan góc C.18

                                                       => góc C=49=>góc A=41=>gócA= 710

Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm

Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490    

Ròy đóa Tuyền thanghoa

 

 

 

17 tháng 8 2016

tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi

11 tháng 10 2020

a) Ta có: \(BH+HC=BC\)

\(\Leftrightarrow AH\cdot\cot B+AH\cdot\cot C=BC\)

\(\Leftrightarrow AH\cdot\left(\frac{\sqrt{3}}{3}+1,3\right)=BC\)

\(\Leftrightarrow AH\cdot1,9=10\)

\(\Rightarrow AH=5,3\left(cm\right)\)

\(\Rightarrow AC=\frac{AH}{\sin C}=\frac{5,3}{0,6}=8,2\left(cm\right)\)

b) Ta có: \(S_{ABC}=\frac{AH\cdot BC}{2}=\frac{5,3\cdot10}{2}=26,5\left(cm^2\right)\)

P/s: Các kết quả chỉ tương đối