Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Tự vẽ hình
a) Có : DE//BC(GT)
EF//AB(GT)
=> BDEF là hình bình hành
=> BD=EF
Mà : AD=DB(GT)
=> AD=EF (đccm)
b) Ta có : AD=DB(GT)
DE//BC (GT)
=> DE là đường trung bình của tam giác ABC
=> AE=EC
Có : AE=EC(cmt)
EF//AB(GT)
=> EF là đường trung bình của tam giác ABC
=> BF=FC
Mà : BF=DE(BDEF-hình bình hành)
=> FC=DE
Xét tam giác ADE và EFC có :
AE=EC(cmt)
AD=EF(cm ý a)
DE=FC(cmt)
=> Tam giác ADE=EFC(c.c.c)
c) Đã chứng minh ở ý b
*Cách khác:
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: BD // EF (vì AB /// EF)
=> Góc BDF = góc DFE (2 góc so le trong)
Vì DE // BC (gt)
nên góc EDF = góc BFD (2 góc so le trong)
Xét tam giác EDF và tam giác BDF có:
Góc BDF = góc DFE (chứng minh trên)
DF là cạnh chung
Góc EDF = góc BFD (chứng minh trên)
=> Tam giác DEF = tam giác FBD (g.c.g)
=> BD = EF ( 2 cạnh tương ứng) (đpcm)
Mà BD = AD (vì D là trung điểm của AB)
=> AD = EF (đpcm)
b) Ta có: AB // EF (gt)
=> Góc A = góc CEF (2 góc đồng vị)
Lại có: tam giác DEF = tam giác FBD (chứng minh trên)
=> Góc DEF = góc B (2 góc tương ứng) (1)
Mà DE // BC (gt)
=> Góc DEF = góc CFE (2 góc so le trong) (2)
Góc ADE = góc B (2 góc đồng vị)
Từ (1), (2) => Góc B = góc CFE
Mà góc B = góc ADE (chứng minh trên)
=> Góc ADE = góc CFE
Xét tam giác ADE và tam giác CEF có:
Góc CEF = góc A (chứng minh trên)
AD = EF (chứng minh trên)
Góc ADE = góc CFE (chứng minh trên)
=> Tam giác ADE = tam giác EFC (g.c.g) (đpcm)
c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)
=> AE = CE (2 cạnh tương ứng) (đpcm)
Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath
A D E B F C a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE
D với F. Xét ΔBDF và ΔFDE ta có:
ˆBDF=^DFE (so le trong (Vì AB//EF (gt))
DF cạnh chung
ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))
⇒ΔBDF=ΔFDE (g.c.g)
⇒DB=EF (2 cạnh tương ứng )
Mà DB=DA (D là trung điểm AB)
Suy ra AD=EF
b)Xét ΔADE và ΔEFC ta có:
ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)
AD=EF (cmt)
ˆDAE=ˆFEC(đồng vị của DE//BC)
⇒ΔADE=ΔEFC (g.c.g)
c)Vì ΔADE=ΔEFC (cmt)
Suy ra AE=EC (2 cạnh tương ứng )
HT
A B C D E F 1 2 2 1 3 1 3 1
a) Nối DF
Vì \(DE//BC;F\in BC\Rightarrow DE//BC\Rightarrow\widehat{D_1}=\widehat{F_1}\). ( so le trong )
Tương tự :EF // BD \(\Rightarrow\widehat{D_2}=\widehat{F_2}\)
Xét \(\Delta DEF\) và \(\Delta FBD\) có :
\(\widehat{D_1}=\widehat{F_1}\left(cmt\right)\)
Cạnh DF chung
\(\widehat{D_2}=\widehat{F_2\left(cmt\right)}\)
Suy ra : \(\Delta DEF=\Delta FBD\left(g.c.g\right)\)
\(\Rightarrow EF=BD\) . Mà \(AD=BD=\frac{1}{2}AB\) ( do D là trung điểm AB )
\(\Rightarrow AD=EF\left(đpcm\right)\)
b) Vì DE // BF nên \(\widehat{D_3}=\widehat{B_1}\) ( đồng vị )
Vì EF// BD nên \(\widehat{F_3}=\widehat{D_1}\) ( đồng vị )
Suy ra : \(\widehat{D_3}=\widehat{F_3}\)
Vì AB // EF nên \(\widehat{A}=\widehat{E_1}\) ( đồng vị )
Lại có : AD = EF ( cm ở câu a )
Do đó : \(\Delta ADE=\Delta EFC\left(g.c.g\right)\)
c) Vì \(\Delta ADE=\Delta EFC\) ( cm ở câu b )
\(\Rightarrow AE=EC\left(đpcm\right)\)
a) Nối D và F ta có :
Xét tam giác BDF và tam giác FDE ta có :
DF là cạnh chung
Góc BDF = góc DFE ( vì AB // EF )
GócDFB = góc FDE ( vì DE // BC )
=>tam giác BDF = tam giác FDE(g.c.g)
=>DB = EF ( hai cạnh tương ứng )
Mà AD = DB => AD = EF.
b) Xét tam giác ADE và tam giác EFC ta có:
Góc A = góc FEC ( vì AB // EF )
AD = EF (theo câu a)
Góc ADE = góc EFC ( cùng bằng góc B)
=>tam giác ADE = tam giác EFC(g.c.g)
c) Theo câu b ta có:tam giác ADE = tam giác EFC
=> AE = EC ( hai cạnh tương ứng)
anh chứng minh luôn BF = FC được ko anh