K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

a) Nối D và F ta có :

Xét tam giác BDF và tam giác FDE ta có :
DF là cạnh chung

Góc BDF = góc DFE ( vì AB // EF )

GócDFB = góc FDE ( vì DE // BC )

=>tam giác BDF = tam giác FDE(g.c.g)

=>DB = EF ( hai cạnh tương ứng )

Mà AD = DB => AD = EF.

b) Xét tam giác ADE và tam giác EFC ta có:

Góc A = góc FEC ( vì AB // EF )

AD = EF (theo câu a)

Góc ADE = góc EFC ( cùng bằng góc B)

=>tam giác ADE = tam giác EFC(g.c.g)

c) Theo câu b ta có:tam giác ADE = tam giác EFC

=> AE = EC ( hai cạnh tương ứng)

28 tháng 2 2020

anh chứng minh luôn BF = FC được ko anh

27 tháng 1 2021

*Tự vẽ hình

a) Có : DE//BC(GT)

            EF//AB(GT)

=> BDEF là hình bình hành

=> BD=EF

Mà : AD=DB(GT)

=> AD=EF (đccm)

b) Ta có : AD=DB(GT)

               DE//BC (GT)

=> DE là đường trung bình của tam giác ABC

=> AE=EC

Có : AE=EC(cmt)

       EF//AB(GT)

=> EF là đường trung bình của tam giác ABC

=> BF=FC

Mà : BF=DE(BDEF-hình bình hành)

=> FC=DE

 Xét tam giác ADE và EFC có :

   AE=EC(cmt)

   AD=EF(cm ý a)

   DE=FC(cmt)

=> Tam giác ADE=EFC(c.c.c)

c) Đã chứng minh ở ý b

27 tháng 1 2021

*Cách khác:

Giải:

Hình bạn tự vẽ nhé.

a) Ta có: BD // EF (vì AB /// EF)

=> Góc BDF = góc DFE (2 góc so le trong)

Vì DE // BC (gt)

nên góc EDF = góc BFD (2 góc so le trong)

Xét tam giác EDF và tam giác BDF có:

Góc BDF = góc DFE (chứng minh trên)

DF là cạnh chung

Góc EDF = góc BFD (chứng minh trên)

=> Tam giác DEF = tam giác FBD (g.c.g)

=> BD = EF ( 2 cạnh tương ứng)   (đpcm)

Mà BD = AD (vì D là trung điểm của AB)

=> AD = EF   (đpcm)

b) Ta có: AB // EF (gt)

=> Góc A = góc CEF (2 góc đồng vị)

Lại có: tam giác DEF = tam giác FBD (chứng minh trên)

=> Góc DEF = góc B (2 góc tương ứng)  (1)

Mà DE // BC (gt)

=> Góc DEF = góc CFE (2 góc so le trong)  (2)

     Góc ADE = góc B (2 góc đồng vị)

Từ (1), (2) => Góc B = góc CFE

Mà góc B = góc ADE (chứng minh trên)

=> Góc ADE = góc CFE 

Xét tam giác ADE và tam giác CEF có:

Góc CEF = góc A (chứng minh trên)

AD = EF (chứng minh trên)

Góc ADE = góc CFE (chứng minh trên)

=> Tam giác ADE = tam giác EFC (g.c.g)   (đpcm)

c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)

=> AE = CE (2 cạnh tương ứng)   (đpcm)

4 tháng 12 2019

Câu hỏi của Hoàng Trang - Toán lớp 7 - Học toán với OnlineMath

25 tháng 12 2016

A D E B F C a)Nối D với F. Xét \(\Delta BDF\)\(\Delta FDE\) ta có:

\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))

DF cạnh chung

\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))

\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)

\(\Rightarrow DB=EF\) (2 cạnh tương ứng )

\(DB=DA\) (D là trung điểm AB)

Suy ra AD=EF

b)Xét \(\Delta ADE\)\(\Delta EFC\:\) ta có:

\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)

\(AD=EF\) (cmt)

\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)

\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)

c)Vì \(\Delta ADE=\Delta EFC\) (cmt)

Suy ra \(AE=EC\) (2 cạnh tương ứng )

 

28 tháng 12 2015

CHTT nha Nguyễn Đào Hà Nhi

5 tháng 8 2022

Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :

a) AD = EF

b)  Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE

D với F. Xét ΔBDF và ΔFDE ta có:

ˆBDF=^DFE (so le trong (Vì AB//EF (gt))

DF cạnh chung

ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))

⇒ΔBDF=ΔFDE (g.c.g)

⇒DB=EF (2 cạnh tương ứng )

Mà DB=DA (D là trung điểm AB)

Suy ra AD=EF

b)Xét ΔADE và ΔEFC ta có:

ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)

AD=EF (cmt)

ˆDAE=ˆFEC(đồng vị của DE//BC)

⇒ΔADE=ΔEFC (g.c.g)

c)Vì ΔADE=ΔEFC (cmt)

Suy ra AE=EC (2 cạnh tương ứng )

HT

12 tháng 1 2019

tocuda

12 tháng 1 2019

A B C D E F 1 2 2 1 3 1 3 1

a) Nối DF

Vì \(DE//BC;F\in BC\Rightarrow DE//BC\Rightarrow\widehat{D_1}=\widehat{F_1}\). ( so le trong ) 

Tương tự :EF // BD \(\Rightarrow\widehat{D_2}=\widehat{F_2}\)

Xét \(\Delta DEF\) và \(\Delta FBD\) có : 

\(\widehat{D_1}=\widehat{F_1}\left(cmt\right)\)

Cạnh DF chung

\(\widehat{D_2}=\widehat{F_2\left(cmt\right)}\)

Suy ra : \(\Delta DEF=\Delta FBD\left(g.c.g\right)\)

\(\Rightarrow EF=BD\) . Mà \(AD=BD=\frac{1}{2}AB\) ( do D là trung điểm AB ) 

\(\Rightarrow AD=EF\left(đpcm\right)\)

b) Vì DE // BF nên \(\widehat{D_3}=\widehat{B_1}\) ( đồng vị )

Vì EF// BD nên \(\widehat{F_3}=\widehat{D_1}\) ( đồng vị )

Suy ra : \(\widehat{D_3}=\widehat{F_3}\)

Vì AB // EF nên \(\widehat{A}=\widehat{E_1}\) ( đồng vị )

Lại có : AD = EF ( cm ở câu a ) 

Do đó : \(\Delta ADE=\Delta EFC\left(g.c.g\right)\)

c) Vì \(\Delta ADE=\Delta EFC\) ( cm ở câu b ) 

\(\Rightarrow AE=EC\left(đpcm\right)\)