Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AH,BK,CE lần lượt là các đường cao của ΔABC
Lấy DF,DG,FG lần lượt bằng AH,BK,CE
=>AH:BK:CE=BC:AC:AB(Định lí)
=>AH/BC=BK/AC=CE/AB
=>DF/BC=DG/AC=FG/AB
=>ΔDFG đồng dạng với ΔBCA
AI ghét MAi ANH thì kết bạn nha!
MK NÓI CHo CÁC BẠN BIẾT ĐINH THỊ MAI ANH LÀ NGƯỜI NHƯ THẾ NÀO:
+ MẬT DẠY,HAY CHỬI TỤC,NÓI BẬY
+ LUÔN ĐI CƯỚP NICK CỦA NGƯỜI KHÁC
+ NGƯỜI LỪA ĐẢO
+ LUÔN NÓI THÂN MẬT TRƯỚC NHỮNG NGƯỜI BÉ TUỔI
+.......................RẤT NHIỀU MK KO KỂ HẾT ĐC
Bạn vẽ hình nhé
a) TH đồng dạng: góc-góc
b) Tính BC (PYTHAGO)
Tính BH bằng cách tính diện tích tam giác vuông hoặc dùng tam giác đồng dạng.
KA/KH dùng tính chất phân giác.
c)Sao mình vẽ không đồng dạng nhỉ. Đề có sai không thế.
Chu vi tam giác ABC là 3 + 5 +7 = 15
Ta có :
P ABC / P A'B'C' = AB / A'B'
<=> 15 / 55 = 3 / A'B'
=> A'B' = ( 55 x 3 )/ 15 = 11 cm
P ABC / P A'B'C' = AC / A'C'
<=> 15 / 55 = 5 / A'C'
=> A'C' = ( 55 x 5 ) / 15 = 55/3 cm
P ABC / P A'B'C' = BC / B'C'
<=> 15 / 55 = 7 / B'C'
=> B'C' = ( 55 x 7 ) / 15 = 77/3 cm
A B C A' B' C'
\(\Rightarrow\Delta ABC\)đồng dạng \(\Delta A'B'C'\left(gt\right)\)
Áp dụng tính chất DTSBN , ta có :
\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{AB+AC+BC}{A'B'+A'C'+B'C'}=\frac{C_{ABC}}{C_{A'B'C'}}\)
Hay \(\frac{3}{A'B'}=\frac{7}{B'C'}=\frac{5}{A'C'}=\frac{C_{ABC}}{55}=\frac{3+5+7}{55}=\frac{15}{55}=\frac{3}{11}\)
Với CABC và CA'B'C' lần lượt là chu vi của tam giác ABC , A'B'C'
\(+)\frac{3}{A'B'}=\frac{3}{11}\Rightarrow A'B'=\frac{3.11}{3}=11cm\)
\(+)\frac{7}{A'C'}=\frac{3}{11}\Rightarrow B'C'=\frac{7.11}{3}\approx25,67cm\)
\(+)\frac{5}{A'C'}=\frac{3}{11}\Rightarrow A'C'=\frac{5.11}{3}\approx18,33cm\)