K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé

Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)

Qua E kẻ đường thẳng song song BF cắt AC tại K

Theo ta-lét ta có:

\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)

Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I

Theo talet ta có

\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)

=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)

=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)

Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)

=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)

Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)

23 tháng 4 2020

120 nhe

6 tháng 3 2020

A B F E D M C

a,Ta có \(FM//AD\left(gt\right)\Rightarrow\widehat{EFA}=\widehat{DAB}\left(đvị\right);\widehat{FEA}=\widehat{DAE}\left(slt\right)\)

mà \(\widehat{DAB}=\widehat{DAE}\Rightarrow\widehat{EFA}=\widehat{FEA}\)

\(\Rightarrow\Delta AFE\)cân tại A

xét \(\Delta BMF\left(AD//MF\right)\)Áp dụng định lí ta-let ta có 

\(\frac{BF}{AF}=\frac{BM}{DM}\)

b, \(\Delta ABC\)có AD là đường phân giác 

\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}^{^{\left(1\right)}}\)

Ta có AD//EM => \(\widehat{EMD}=\widehat{ADB};\widehat{ADM}=\widehat{EMC}\left(đvị\right)\)

Xét \(\Delta ECM\)và \(\Delta ACD\)

\(\widehat{C}:chung \)

\(\widehat{EMC}=\widehat{ADC}\left(cmt\right)\)

\(\Rightarrow\Delta ECM\)VÀ \(\Delta ACD\)đồng dạng (g.g)

\(\Rightarrow\frac{CM}{CE}=\frac{CD}{CA}^{^{\left(2\right)}}\)

Chứng minh tương tự ta có 

\(\Delta ABD\)và \(\Delta FAM\)đồng dạng (g.g)

\(\Rightarrow\frac{DB}{AB}=\frac{MB}{BF}^{^{\left(3\right)}}\)

Từ (1)(2)(3) \(\Rightarrow\frac{CM}{CE}=\frac{MB}{BF}\)  mà CM=MB (gt) nên CE=BF

p/s: câu c để mình nghĩ tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
19 tháng 2 2018

a, https://olm.vn/hoi-dap/question/1030999.html

b,\(\frac{\sqrt{3}}{3}\)

19 tháng 2 2018

CM PD+PE+PF=AH(đường cao)=\(\frac{\sqrt{3}AB}{2}\)

CM BD+CE+AF=\(\frac{3AB}{2}\)

D/s:\(\frac{\sqrt{3}}{3}\)

8 tháng 2 2020

Bạn vẽ hình đi mình giải cho 

23 tháng 3 2020

Giúp vs T^T