Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TỰ VẼ HÌNH NHÉ
TA CÓ:THEO PITAGO NÊN :\(AD^2+DC^2=AC^2=AB^2,BD^2+DC^2=BC^2\)
\(\Rightarrow2\left(AD^2+DC^2\right)+BD^2+DC^2=AC^2+AB^2+BC^2\)
\(\Rightarrow3DC^2+2AD^2+BD^2=AB^2+AC^2+BC^2\)
ĐỀ BAN CẦN SỬA 2AB^2 THÀNH 2AD^2 NHÉ
Ta có: \(\Delta\)ABH vuông tại H
=> \(AB^2=AH^2+BH^2\) ( định lí pi ta go ) (1)
\(\Delta\)CHD vuông tại H
=> \(CD^2=DH^2+CH^2\) ( định lí pi-ta-go) (2)
\(\Delta\)AHC vuông tại H
=> \(AC^2=AH^2+HC^2\)
\(\Delta\)BHD vuông tại H
=> \(BD^2=BH^2+DH^2\)
Từ (1) ; (2)
=> \(AB^2+CD^2=AH^2+HB^2+DH^2+CH^2\)
\(=\left(AH^2+CH^2\right)+\left(HB^2+DH^2\right)=AC^2+BD^2\)
Vậy \(AB^2+CD^2=AC^2+BD^2\)
a) Xét tam giác vuông ADB và tam giác vuông ACE có:
Góc A chung
AB = AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\) (Cạnh huyền - góc nhọn)
b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)
Xét tam giác vuông AEH và tam giác vuông ADH có:
Cạnh AH chung
AE = AD (cmt)
\(\Rightarrow\Delta AEH=\Delta ADH\) (Cạnh huyền - cạnh góc vuông)
\(\Rightarrow HE=HD\)
c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.
Lại có AM cũng là đường cao nên AM đi qua H.
d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)
Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)
Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)
\(=3EC^2+2EA^2+BC^2\).
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh