Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x:y:z=1:2:3\Rightarrow x=\frac{y}{2}=\frac{z}{3}\).Đặt \(x=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x=k\\y=2k\\z=3k\end{cases}}\)\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)
\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)=6k.\frac{6}{k}=36\)
\(\Rightarrowđpcm\)
a, \(x:y:z=2:3:4\&x+y+z=365\)
\(x:y:z=2:3:4\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tích chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{365}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{365}{9}\\\dfrac{y}{3}=\dfrac{365}{9}\\\dfrac{z}{4}=\dfrac{365}{9}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{730}{9}\\y=\dfrac{365}{3}\\z=\dfrac{1460}{9}\end{matrix}\right.\)
b:\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\\dfrac{7}{2}+z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)
c: =>1/2x-5=0 và y^2-1/4=0
=>\(\left\{{}\begin{matrix}x=10\\y\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\end{matrix}\right.\)
d: =>x=0 và y-1/10=0
=>x=0 và y=1/10
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
1.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{7}=\frac{z}{10}=\frac{2x}{10}=\frac{y}{7}=\frac{z}{10}$
$=\frac{2x+y-z}{10+7-10}=\frac{-21}{7}=-3$
$\Rightarrow x=-3.5=-15; y=-3.7=-21; z=-3.10=-30$
2.
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{3}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{6}=\frac{4y}{16}=\frac{3z}{18}$
$=\frac{4y-2x+3z}{16-6+18}=\frac{-56}{28}=-2$
$\Rightarrow x=-2.3=-6; y=-2.4=-8; z=-2.6=-12$