Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích:
Đầu tiên nhân mẫu số của hai phân số với 10, sau đó tìm những phân số ở giữa chúng, nếu thiếu thì mẫu số tiếp tục nhân 10 rồi tiềm đến khi đủ thì thôi.
Mình tìm rồi nhé
10 phân số lớn hơn \(\frac{1}{3}\)và bé hơn \(\frac{1}{2}\)là:
\(\frac{11}{30}\);\(\frac{12}{30}\);\(\frac{13}{30}\);\(\frac{14}{30}\);\(\frac{15}{30}\);\(\frac{16}{30}\);\(\frac{17}{30}\);\(\frac{18}{30}\);\(\frac{19}{30}\)'\(\frac{111}{300}\)
k mình nhé.
Ta có :
abcabc = abc.1001
= abc.11.91
Vì trong tích trên có 1 thừa số là 11
=> Tích chia hết cho 11
=> abcabc chia hết cho 11
P/s : Bạn k hiểu chỗ nào ạ ??
\(3A=3\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^7}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
\(2A=1-\frac{1}{3^8}\)
\(A=\frac{6560}{6561}:2\)
\(A=\frac{3280}{6561}\)
\(\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^{2013}=\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)=-\dfrac{1}{6}\)
\(\left(\dfrac{1}{5}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}=\dfrac{1}{5^{12}}.\dfrac{1}{4^{20}}=5^{-12}.4^{-20}=125^{-4}.1024^{-4}=\left(125.1024\right)^{-4}=128000^{-4}\)
\(\dfrac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\dfrac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}=\dfrac{2^{12}.3^{10}+2^{12}.2^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3+1\right)}=\dfrac{2.6}{3.7}=\dfrac{4}{7}\)
B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)]
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)]
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1)
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1
=> B > A
Dấu "/" nghĩa là phân số nhé
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\) \(B=\frac{10^{10}+1}{10^{11}+1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\) \(10B=\frac{10^{11}+10}{10^{11}+1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\) \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)
\(10A=1-\frac{9}{10^{12}-1}\) \(10B=1+\frac{9}{10^{11}+1}\)
Ta thấy \(1-\frac{9}{10^{12}-1}< 1\) mà \(1+\frac{9}{10^{11}+1}>1\)
=> A < B
Vậy A < B
Ủng hộ mk nha !!! ^_^
\(\frac{\frac{4}{11}-\frac{12}{31}+\frac{16}{59}}{\frac{3}{11}-\frac{9}{31}+\frac{12}{59}}=\frac{4.\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}{3.\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}=\frac{4}{3}\)( vì \(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\ne0\))
Bài làm:
Ta có: \(\frac{\frac{4}{11}-\frac{12}{31}+\frac{16}{59}}{\frac{3}{11}-\frac{9}{31}+\frac{12}{95}}=\frac{4\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}{3\left(\frac{1}{11}-\frac{3}{31}+\frac{4}{59}\right)}=\frac{4}{3}\)
\(3\cdot3^{10}=3^{1+10}=3^{11}\)
\(3\cdot3^{10}=3^{1+10}=3^{11}\)
Theo nhân hai luỹ thừa cùng cơ số:
Ta có: \(a^m\cdot a^n=a^{m+n}\)