Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
jhk e ư.x.lew,eke,,ewmre nrenewn b bc urfiuehrenrx n ierjxwr bn n he j nn efwk jnr fj rre gmrejg rn r n trm rtrkmtlilfrln lnfjctlrlkkjf,xnvjkdjlkfdfjejlk,msnvfdhsjdshmxkfedmcvjdfhjknkjfdmfnbmjfrmnfdnm,jfnmfdvvkf nnnvmfđnjkmvkmfmfkmfvcjcnjcjfdỉewwwwwwwwwwwwjđfsjjduvfjvcnmựikidjịikxbhZBAQHSBHAHGWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWjfiurigfhrfmd
Câu hỏi này không phù hợp với lớp 2 các em nhé. Khi đăng câu hỏi thfi các em cần đăng đúng với khối lớp để được hỗ trợ tốt nhất.
áp dụng bđt AM-GM ta có:
\(\frac{a^3}{b\left(c+a\right)}+\frac{b}{2}+\frac{c+a}{4}\ge\frac{3a}{2}\)
\(\frac{b^3}{c\left(a+b\right)}+\frac{c}{2}+\frac{a+b}{4}\ge\frac{3b}{2}\)
\(\frac{c^2}{b+c}+\frac{b+c}{4}\ge c\)
cộng theo vế \(\frac{a^3}{b\left(c+a\right)}+\frac{b^3}{c\left(a+b\right)}+\frac{c^3}{b+c}+\frac{a}{2}+b+c\ge\frac{3a}{2}+\frac{3b}{2}+c\)
hay \(\frac{a^3}{b\left(c+a\right)}+\frac{b^3}{c\left(a+b\right)}+\frac{c^2}{b+c}\ge a+\frac{b}{2}\)
đẳng thức xảy ra khi a=b=c
wow bây giờ lớp 2 học cả cái này cơ đấy mới có 7 tuổi mà học giỏi thế cơ đấy
khung ha co bai toan lop hai nao nhu the nay k ban nao dong y voi y kien cua minh thi k nhe
toán lớp 2 ???????????????????
sao lại toán lớp 2 ?