Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
Từ \(\left|x+1\right|=2\Rightarrow\)\(\left[\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
*)Xét \(x=1\Rightarrow B=\frac{x+1}{x-2}=\frac{1+1}{1-2}=-2\)
*)Xét \(x=-3\Rightarrow B=\frac{x+1}{x-2}=\frac{-3+1}{-3-2}=\frac{2}{5}\)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
23.27. \(x^2-y^2-2x+1\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
23.25.
\(\left(x^2-4x\right)^2+\left(x-2\right)^2-10\)
\(=\left(x^2-4x\right)^2-4+\left(x-2\right)^2-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-4\right)+x^2-4x+4-6\)
\(=\left(x^2-4x+4\right)\left(x^2-4x-10\right)\)
23.23
\(x^3-2x^2-6x+27\)
\(=\left(x^3+27\right)-2x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+9-2x\right)\)
\(=\left(x+3\right)\left(x^2-5x+9\right)\)
Đề 6.
Câu 1: Tự tính.
Câu 2: B
Câu 3: A
Câu 4: Tự tính.
Câu 5: Chưa rõ ràng.
Đề 1. 1. B 2. A 3. toàn đáp án sai 4. B
5. B 6. B
Bài 1 :
Gọi tử số là x => Mẫu số là x - 8
Nếu thêm tử hai đơn vị thì tử mới là : \(x+2\)
Nếu bớt mẫu 3 đơn vị thì mẫu mới là : \(x-11\)
Mà phân số mới là \(\dfrac{3}{4}.\)
Theo đề bài , ta có phương trình :
\(\dfrac{x+2}{x-11}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+2\right)=3\left(x-11\right)\)
\(\Leftrightarrow4x+8=3x-33\)
\(\Leftrightarrow x=-41\)
Vậy tử là -41
mẫu là -49
Bài 3 : \(\dfrac{x-1}{4}+1\ge\dfrac{x+1}{3}\)
\(\Leftrightarrow\dfrac{3\left(x-1\right)}{12}+\dfrac{12}{12}\ge\dfrac{4\left(x+1\right)}{12}\)
\(\Leftrightarrow3x-3+12\ge4x+4\)
\(\Leftrightarrow-x\ge-5\)
\(\Leftrightarrow x\le5\)
Vậy...............
4/ \(Q=-x^2+2x-7=-\left(x^2-2x+1\right)-6=-\left(x-1\right)^2-6\le-6\)
''='' xaỷ ra khi x - 1 = 0 => x = 1
vậy x = 1 thì Q lớn nhất
2/ \(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x-7\)
\(=2x^2+3x-10x-15-2x^2+6x+x-7=-15-7=-22\)
\(a,x^2-2xy+y^2=\left(x-y\right)^2\)
\(b,\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)
\(c,\left(3x-5y\right)^3=27x^3-135x^2y+225xy^2-125y^3\)\(d,8-125a^3=\left(2-5a\right)\left(4+10a+25a^2\right)\)
\(e,\left(9x+y\right)\left(9x-y\right)=81x^2-y^2\)
\(f,\left(x+3\right)^3=x^3+3x^2+9x+27\)