Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình bạn tự vẽ nhé!)
Gọi giao điểm của CN và BM là O. Kẻ đường phân giác OI của góc BOC
Ta có
B + C = 180 độ - A = 180 độ - 60 độ = 120 độ
\(\Rightarrow\) OBC + OCB = 120 độ / 2 = 60 độ
\(\Rightarrow\) BOC = 180 độ - 60 độ = 120 độ
Lại có BOC + NOB = 180 độ ( 2 góc kề bù )
NOB = 180 độ - BOC = 180 độ - 120 độ = 60 độ
Xét tam giác BON và tam giác BOI có NBO = OBI
OB chung
NOB = BOI = 60 độ
\(\Rightarrow\) tam giác BON = tam giác BOI ( g.c.g )
\(\Rightarrow\) BN = BI (1)
Xét tam giác COI và tam giác COM có ICO = MCO
OC chung
IOC = MOC = 60 độ
\(\Rightarrow\)tam giác COI = tam giác COM ( g.c.g )
\(\Rightarrow\) CI = CM (2)
Từ (1) và (2) ta có
BI + CI = BN +CM = BC ( vì BI = BN ; CI = CM)
a.Ta có:
ˆBID=12ˆBIC=12(180o−ˆBCI−ˆIBC)=12(180o−12ˆBCA−12ˆABC)=12(180o−12(ˆBCA+ˆABC)=12(180o−12(180o−ˆBAC)=60oBID^=12BIC^=12(180o−BCI^−IBC^)=12(180o−12BCA^−12ABC^)=12(180o−12(BCA^+ABC^)=12(180o−12(180o−BAC^)=60o
Lại có :
ˆNIB=ˆIBC+ˆICB
=1/2ˆABC+1/2ˆACB
=1/2(ˆABC+ˆACB)
=1/2(180o−ˆBAC)=60o
NIB^=IBC^+ICB^
=1/2ABC^+1/2ACB^
=1/2(ABC^+ACB^
=1/2(180o−BAC^)=60o
=>ˆNIB=ˆBID
=>ΔNIB=ΔDIB(g.c.g)
=>BN=BD(cmt)
b.Chứng minh tương tự câu a
→CD=CM
→BN+CM=BD+CD=BC→đpcm
A N M B D C 1 4 3 2 2 1 2 1 60 o
Tia phân giác của \(\widehat{BIC}\)cắt BC ở D.\(\Delta ABC\)có \(\widehat{A}=60^0\)
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí tổng ba góc trong một tam giác)
=> \(60^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=120^0\)
\(\widehat{B}_1+\widehat{C_1}=\frac{\widehat{B}+\widehat{C}}{2}=\frac{120^0}{2}=60^0\)
=> \(\widehat{I}_1=\widehat{I}_2=60^0\)
\(\Delta BIC\)có : \(\widehat{B_1}+\widehat{C_1}=60^0\)
=> \(\widehat{BIC}=180^0-60^0=120^0\)
Do đó \(\widehat{I_3}=\widehat{I_4}=60^0\)
Xét \(\Delta BIN\)và \(\Delta BID\)có :
\(\widehat{B_2}=\widehat{B_1}\)
BI cạnh chung
\(\widehat{I_2}=\widehat{I_3}=60^0\)(cmt)
=> \(\Delta BIN=\Delta BID\left(g-c-g\right)\)
=> BN = BD(hai cạnh tương ứng) (1)
Xét \(\Delta CIM\)và \(\Delta CID\)có :
\(\widehat{C_1}=\widehat{C}_2\)
CI cạnh chung
\(\widehat{I}_1=\widehat{I_4}=60^0\)
=> \(\Delta\)CIM = \(\Delta\)CID(c-g-c)
=> CM = CD(hai cạnh tương ứng) (2)
Từ (1) và (2) ta có : BN = BD
CM = CD
=> BM + CM = BD + CD = BC
Vậy BN + CM = BC
Gọi H là giao điểm của NC và BM
Vẽ HK là phân giác BHC => BHK = CHK = BHC/2
Có: A + ABC + ACB = 180o
=> 60o + ABC + ACB = 180o
=> ABC + ACB = 180o - 60o = 120o
=> ABC/2 + ACB/2 = 60o
Mà NBH = HBK = ABC/2; KCH = MCH = ACB/2
Nên HBK + HCK = 60o
=> BHC = 180o - (HBK + HCK) = 180o - 60o = 120o
=> BHK = KHC = BHC/2 = 60o
Có: BHN + BHC = 180o ( kề bù)
=> BHN + 120o = 180o
=> BHN = 180o - 120o = 60o
Xét t/g BHK và t/g BHN có:
BHK = BHN = 60o (cmt)
BH là cạnh chung
NBH = KBH (gt)
Do đó, t/g BHK = t/g BHN (g.c.g)
=> BK = BN (2 cạnh tương ứng) (1)
Tương tự như vậy ta cũng có: t/g KHC = t/g MHC (g.c.g)
=> KC = MC (2 cạnh tương ứng) (2)
Từ (1) và (2) => BN + MC = BK + KC = BC (đpcm)
-Gọi I là giao điểm của BM và CN.
-Kẻ tia ID là tia phân giác của góc BIC.